Какие материалы используются для комбинированной брони. Алюминиевая композитная броня

Использование неметаллических комбинированных материалов в бронировании боевых машин ни для кого не является секретом уже много десятилетий. Подобные материалы в дополнение к основной стальной броне начали широко применять с появлением нового поколения послевоенных танков в 1960-70-х годах. Например, советский танк Т-64 имел лобовую броню корпуса с промежуточным слоем из броневого стеклотекстолита (СТБ), а в лобовых деталях башни использовался наполнитель из керамических стержней. Такое решение значительно повышало стойкость бронеобъекта к воздействию кумулятивных и бронебойных подкалиберных снарядов.

Современные танки оснащены комбинированным бронированием, призванным значительно снижать воздействие поражающих факторов новых противотанковых средств. В частности, стеклотекстолитовый и керамический наполнители используются в комбинированном бронировании отечественных танков Т-72, Т-80 и Т-90, аналогичный материал из керамики применен для защиты британского основного танка «Челленджер» (броня Chobham) и французского основного танка «Леклерк». Композитные пластики используются в качестве подбоя в обитаемых отделениях танков и бронемашин, исключая поражение экипажа вторичными осколками. В последнее время появились бронеавтомобили, корпус которых полностью состоит из композитов на основе стеклопластика и керамики.

Отечественный опыт

Основной причиной использования в бронировании неметаллических материалов является их относительно малая масса при повышенном уровне прочности, а также стойкость к коррозии. Так, керамика сочетает свойства малой плотности и высокой прочности, но при этом она достаточно хрупкая. А вот полимеры обладают как высокой прочностью, так и вязкостью, удобны для формообразования, недоступного для броневой стали. Особенно стоит отметить стеклопластики, на основе которых специалисты разных стран давно пытаются создать альтернативу металлической броне. Такие работы начались после Второй мировой войны в конце 1940-х годов. Тогда всерьёз рассматривалась возможность создания лёгких танков с пластиковой бронёй, так как она при меньшей массе теоретически давала возможность значительно увеличить баллистическую защиту и повысить противокумулятивную стойкость.

Стеклопластиковый корпус для такнка ПТ-76

В СССР опытные разработки противопульной и противоснарядной брони из пластических масс начались в 1957 году. Научно-исследовательские и опытно конструкторские работы велись большой группой организаций: ВНИИ-100, НИИ пластмасс, НИИ стекловолокна, НИИ-571, МФТИ. К 1960 году в филиале ВНИИ-100 была разработана конструкция бронекорпуса лёгкого танка ПТ-76 с использованием стеклопластика. По предварительным расчётам, предполагалось снизить массу корпуса бронеобъекта на 30% и даже больше, при сохранении снарядостойкости на уровне стальной брони такой же массы. При этом большая часть экономии массы достигалась за счёт силовых конструкционных деталей корпуса, то есть днища, крыши, рёбер жёсткости и т.п. Изготовленный макет корпуса, детали которого производились на заводе «Карболит» в Орехово-Зуево, прошёл испытания обстрелом, а также ходовые испытания путём буксировки.

Хотя предполагавшаяся снарядостойкость и подтвердилась, по другим параметрам новый материал преимуществ не давал — ожидаемого значительного снижения радиолокационной и тепловой заметности не произошло. Кроме того, по технологической сложности производства, возможности ремонта в полевых условиях, техническим рискам стеклопластиковая броня уступала материалам из алюминиевых сплавов, которые для легких бронированных машин посчитали более предпочтительными. Разработку бронеконструкций, полностью состоящих из стеклопластика, вскоре свернули, так как полным ходом началось создание комбинированной брони для нового среднего танка (впоследствии принятого на вооружение Т-64). Тем не менее, стеклопластик стали активно использовать в гражданском автомобилестроении для создания колёсных вездеходов повышенной проходимости марки ЗиЛ.

Так что в целом исследования в этой области продвигались успешно, ведь композитные материалы имели немало уникальных свойств. Одним из важных результатов этих работ стало появление комбинированной брони с керамическим лицевым слоем и подложкой из армированного пластика. Выяснилось, что такая защита обладает высокой стойкостью к воздействию бронебойных пуль, в то время как её масса в 2-3 раза меньше стальной брони аналогичной прочности. Такую комбинированную бронезащиту уже в 1960-х годах начали применять на боевых вертолётах для защиты экипажа и наиболее уязвимых агрегатов. Позднее аналогичную комбинированную защиту стали использовать в производстве бронированных кресел пилотов армейских вертолётов.

Результаты, достигнутые в Российской Федерации в области разработок неметаллических броневых материалов, показаны в материалах, опубликованных специалистами ОАО «НИИ Стали», крупнейшим в России разработчиком и производителем комплексных систем защиты, среди них — Валерий Григорян (президент, директор по науке ОАО «НИИ Стали», доктор технических наук, профессор, академик РАРАН), Иван Беспалов (начальник отдела, кандидат технических наук), Алексей Карпов (ведущий научный сотрудник ОАО «НИИ Стали», кандидат технических наук).

Испытания керамической бронепанели для усиления защиты БМД-4М

Специалисты «НИИ Стали» пишут, что за последние годы в организации были разработаны защитные структуры 6а класса с поверхностной плотностью 36-38 килограммов на квадратный метр на основе карбида бора производства ВНИИЭФа (Саров) на подложке из высокомолекулярного полиэтилена. ОНПП «Технология» при участии ОАО «НИИ стали» удалось создать защитные структуры 6а класса с поверхностной плотностью 39-40 килограммов на квадратный метр на основе карбида кремния (тоже на подложке из сверхвысокомолекулярного полиэтилена — СВМПЭ).

Эти структуры имеют неоспоримое преимущество по массе по сравнению с бронеструктурами на основе корунда (46-50 килограммов на квадратный метр) и стальными бронеэлементами, но обладают двумя недостатками: низкой живучестью и высокой стоимостью.

Можно добиться увеличения живучести органокерамических бронеэлементов до одного выстрела на один квадратный дециметр за счет выполнения их наборными из небольших плиток. Пока в бронепанель с подложкой из СВМПЭ площадью пять-семь квадратных дециметров можно гарантировать один-два выстрела, но не более. Не случайно зарубежные стандарты пулестойкости предполагают проведение испытаний бронебойной винтовочной пулей только одним выстрелом в защитную структуру. Достижение живучести до трех выстрелов в квадратный дециметр остается одной из главных задач, которую стремятся решить ведущие российские разработчики.

Высокую живучесть можно получить путем применения дискретного керамического слоя, то есть слоя, состоящего из небольших цилиндриков. Такие бронепанели изготавливает, например, фирма TenCate Advanced Armor и другие компании. При прочих равных условиях они примерно на десять процентов тяжелее панелей из плоской керамики.

В качестве подложки под керамику применяются прессованные панели из высокомолекулярного полиэтилена (типа Dyneema или Spectra) как наиболее легкого энергоемкого материала. Однако он изготавливается только за рубежом. Следовало бы и в России наладить собственное производство волокон, а не только заниматься прессованием панелей из импортного сырья. Возможно применение и композитных материалов на основе отечественных арамидных тканей, но масса и стоимость их в значительной степени превышают аналогичные показатели полиэтиленовых панелей.

Дальнейшее улучшение характеристик композитной брони на основе керамических бронеэлементов применительно к объектам БТВТ проводится по следующим основным направлениям.

Повышение качества бронекерамики. Последние два-три года НИИ Стали тесно сотрудничает с производителями бронекерамики в России — ОАО «НЭВЗ-Союз», ЗАО «Алокс», ООО «Вириал» в плане отработки и улучшения качества бронекерамики. Совместными усилиями удалось значительно улучшить ее качество и практически довести до уровня западных образцов.

Отработка рациональных конструктивных решений. Набор керамических плиток обладает особыми зонами вблизи их стыков, которые имеют пониженные баллистические характеристики. С целью выравнивания свойств панели разработана конструкция «профилированной» бронеплитки. Данные панели установлены на автомобиль «Каратель» и успешно прошли предварительные испытания. Кроме того, отработаны структуры на основе корунда с подложкой из СВМПЭ и арамидов с весом 45 килограмм-сил на квадратный метр для панели 6а класса. Однако применение таких панелей в объектах AT и БТВТ ограничено в связи с наличием дополнительных требований (например, стойкость при боковом подрыве взрывного устройства).

Испытанная обстрелом кабина, защищенная комбинированной броней с керамическими плитками

Для бронетехники типа БМП и БТР характерно повышенное огневое воздействие, так что предельная плотность поражений, которую может обеспечить керамическая панель, собранная по принципу «сплошного бронирования», может быть недостаточной. Решение данной проблемы возможно только при использовании дискретных керамических сборок из шестигранных либо цилиндрических элементов, соразмерных средству поражения. Дискретная компоновка обеспечивает максимальную живучесть композитной бронепанели, предельная плотность поражения которой приближается к аналогичному параметру металлических бронеконструкций.

Однако весовые характеристики дискретных керамических бронекомпозиций с основой в виде алюминиевого или стального броневого листа на пять-десять процентов превышают аналогичные параметры керамических панелей сплошной компоновки. Преимуществом панелей из дискретной керамики является также отсутствие необходимости ее приклейки к подложке. Данные бронепанели установлены и испытаны на опытных образцах БРДМ-3 и БМД-4. В настоящее время такие панели применяются в рамках ОКР «Тайфун», «Бумеранг».

Зарубежный опыт

В 1965 году специалисты американской компании DuPont создали материал, получивший название «Кевлар». Он представлял собой арамидное синтетическое волокно, которое, по утверждению разработчиков, в пять раз прочнее стали при той же массе, но при этом обладающее гибкостью обычного волокна. «Кевлар» стал широко применяться как броневой материал в авиации и при создании средств индивидуальной защиты (бронежилеты, каски и т.п.). Помимо этого, «Кевлар» стали внедрять в систему защиты танков и других боевых бронированных машин в качестве подбоя для защиты от вторичного поражения экипажа осколками брони. Позднее аналогичный материал был создан и в СССР, правда, в бронетехнике он не применялся.

Американская опытная ББМ CAV с корпусом из стеклопластика

Тем временем появлялись более совершенные кумулятивные и кинетические средства поражения, а с ними росли требования к бронезащите техники, что увеличивало её вес. Снижение массы боевой техники без ущерба для защиты было практически невозможно. Но в 1980-х годах развитие технологий и новейшие разработки в области химической промышленности позволили вернуться к идее стеклопластиковой брони. Так, американская компания FMC, занимающаяся производством боевых машин, создала опытный образец башни для боевой машины пехоты M2 Bradley, защита которой представляла собой единую деталь из армированного стекловолокном композита (за исключением лобовой части). В 1989 году начались испытания БМП Bradley с бронекорпусом, в состав которого были включены две верхних детали и днище, состоящие из многослойных композитных плит, а облегчённая рама шасси была выполнена из алюминия. По результатам испытаний было выяснено, что по уровню баллистической защиты данная машина соответствует штатной БМП М2А1 при снижении массы корпуса на 27%.

С 1994 года в США в рамках программы Advanced Technology Demonstrator (ATD) создавался опытный образец боевой бронированной машины, получившей название CAV (Composite Armored Vehicle). Её корпус должен был полностью состоять из комбинированной брони на основе керамики и стеклопластика с использованием новейших технологий, за счет чего планировалось снизить общую массу на 33% при уровне защищённости, эквивалентном броневой стали, и, соответственно, повысить подвижность. Основное предназначение машины CAV, разработку которой поручили компании United Defence, была наглядная демонстрация возможности использования композиционных материалов при изготовлении бронекорпусов перспективных БМП, БРМ и других боевых машин.

В 1998 году был продемонстрирован опытный образец гусеничной машины CAV массой 19,6 т. Корпус был изготовлен из двух слоёв композиционных материалов: наружный из керамики на основе оксида алюминия, внутренний — из стеклопластика, армированного высокопрочным стекловолокном. В дополнение внутренняя поверхность корпуса имела противоосколочный подбой. Стеклопластиковое днище в целях повышения защиты от взрыва мин имело структуру с сотовым основанием. Ходовая часть машины закрывалась бортовыми экранами из двухслойного композита. Для размещения экипажа в носовой части предусматривалось изолированное боевое отделение, выполненное сварным способом из титановых листов и имеющее дополнительное бронирование из керамики (лоб) и стеклопластика (крыша) и противоосколочный подбой. Машина оснащалась дизельным двигателем мощностью 550 л.с. и гидромеханической трансмиссией, ее скорость достигала 64 км/ч, запас хода составлял 480 км. В качестве основного вооружения на корпусе была установлена поднимающаяся платформа кругового вращения с 25-мм автоматической пушкой М242 Bushmaster.

Испытания опытного образца CAV включали исследования возможностей корпуса противостоять ударным нагрузкам (планировалось даже установить 105-мм танковую пушку и провести серию стрельб) и ходовые испытания с общим пробегом в несколько тысяч км. Всего до 2002 года программой предусматривалось израсходовать до 12 млн. долларов. Но работы так и не вышли из опытной стадии, хотя и наглядно продемонстрировали возможность применения композитов взамен классического бронирования. Поэтому разработки в этом направлении были продолжены в области совершенствования технологий создания сверхпрочных пластиков.

Германия также не осталась в стороне от общей тенденции и с конца 1980-х гг. вела активные исследования в области неметаллических бронематериалов. В 1994 году в этой стране была принята на снабжение противопульная и противоснарядная композитная броня Mexas, разработанная компанией IBD Deisenroth Engineering на основе керамики. Она имеет модульную конструкцию и используется в качестве дополнительной навесной защиты для боевых бронированных машин, монтируется поверх основной брони. По заявлениям представителей фирмы, композитная броня Mexas эффективно защищает от бронебойных боеприпасов калибром до 14,5 мм. Впоследствии броневые модули Mexas стали широко использоваться для повышения защищенности основных танков и других боевых машин разных стран, в том числе танка «Леопард-2», боевых машин пехоты ASCOD и CV9035, бронетранспортёров Stryker, Piranha-IV, бронеавтомобилей «Динго» и «Феннек», а также самоходной артиллерийской установки PzH 2000.

Одновременно с 1993 года в Великобритании шли работы по созданию прототипа машины ACAVP (Advanced Composite Armoured Vehicle Platform) с корпусом, полностью сделанным из композита на основе фибергласса и армированного стекловолокном пластика. Под общим руководством агентства DERA (Defence Evaluation and Research Agency) министерства обороны, специалисты компаний Qinetiq, Vickers Defence Systems, Vosper Thornycroft, Short Brothers и другие подрядчики в рамках единой опытно-конструкторской работы создавали композитный корпус типа «монокок». Целью разработок было создание прототипа гусеничной боевой бронированной машины с защитой, аналогичной металлической броне, но со значительно сниженной массой. В первую очередь это диктовалось необходимостью иметь полноценную боевую технику для сил быстрого реагирования, которая могла бы транспортироваться самым массовым военно-транспортным самолётом C-130 Hercules. В дополнение к этому новая технология позволяла снизить шумность машины, её тепловую и радиолокационную заметность, продлить срок службы за счет высокой стойкости к коррозии и в перспективе снизить стоимость производства. Для ускорения работ использовались узлы и агрегаты серийной британской БМП Warrior.

Британская опытная ББМ ACAVP с корпусом из стеклопластика

К 1999 году компания Vickers Defence Systems, осуществлявшая проектные работы и общую интеграцию всех подсистем опытного образца, представила прототип ACAVP на испытания. Масса машины составила около 24 тонн, двигатель мощностью 550 л.с., совмещённый с гидромеханической трансмиссией и усовершенствованной системой охлаждения, позволяет развивать скорость до 70 км/ч по шоссе и 40 км/ч по пересечённой местности. В качестве вооружения на машине установлена 30-мм автоматическая пушка, спаренная с 7,62-мм пулёмётом. При этом была использована стандартная башня от серийной БРМ Fox с бронированием из металла.

В 2001 году испытания ACAVP успешно завершились и, по словам разработчика, продемонстрировали впечатляющие показатели защищённости и подвижности (в прессе было амбициозно заявлено, что англичане якобы «впервые в мире» создали композитную бронированную машину). Композитный корпус обеспечивает гарантированную защиту от бронебойных пуль калибра до 14,5 мм в боковую проекцию и от 30-мм снарядов в лобовую, а сам материал исключает вторичное поражение экипажа осколками при пробитии брони. Предусмотрено также дополнительное модульное бронирование для усиления защиты, которое крепится поверх основной брони и при транспортировке машины по воздуху может быстро демонтироваться. В общей сложности на испытаниях машина прошла 1800 км и при этом не было зафиксировано никаких серьёзных поломок, а корпус успешно выдержал все ударные и динамические нагрузки. Кроме того, сообщалось, что масса машины 24 тонны — это не окончательный итог, этот показатель можно снизить, установив более компактный силовой блок и гидропневматическую подвеску, а применение облегчённых гусеничных траков из резины может серьёзно снизить уровень шума.

Несмотря на положительные результаты, прототип ACAVP оказался невостребованным, хотя руководство DERA и планировало продолжить исследования до 2005 года, а впоследствии создать перспективную БРМ с композитной бронёй и экипажем из двух человек. В конечном счёте программа была свёрнута, а дальнейшее проектирование перспективной разведывательной машины уже велось по проекту TRACER с использованием проверенных алюминиевых сплавов и стали.

Тем не менее, работы по исследованию неметаллических броневых материалов для техники и индивидуальной защиты были продолжены. В некоторых странах появились собственные аналоги материала «Кевлар», такие как «Тварон» датской компании Teijin Aramid. Он представляет собой очень прочное и лёгкое параарамидное волокно, которое предполагается использовать в бронировании боевой техники и, по заявлению производителя, может снизить общую массу конструкции на 30-60% по сравнению с традиционными аналогами. Еще один материал, получивший название «Дайнема», производства компании DSM Dyneema является высокопрочным сверхвысокомолекулярным полиэтиленовым (СВМПЭ) волокном. Как утверждает изготовитель, СВМПЭ является самым прочным материалом в мире — в 15 раз прочнее стали (!) и на 40% прочнее арамидного волокна такой же массы. Его планируется использовать для производства бронежилетов, касок и в качестве бронирования лёгких боевых машин.

Легкие бронемашины из пластика

Учитывая накопленный опыт, зарубежными специалистами был сделан вывод, что разработка перспективных танков и бронетранспортёров, полностью оснащённых бронёй из пластика, всё же является довольно спорным и рискованным делом. Но новые материалы оказались востребованными при разработке более лёгкой колёсной техники на базе серийных автомобилей. Так, с декабря 2008 г. по май 2009 г. в США на полигоне в Неваде был испытан легкий бронеавтомобиль с корпусом, полностью состоящим из композиционных материалов. Машина, получившая обозначение ACMV (All Composite Military Vehicle), разработанная компанией TPI Composites, успешно прошла ресурсные и ходовые испытания, проехав в общей сложности 8 тысяч километров по асфальтовым и грунтовым дорогам, а также по пересечённой местности. Были запланированы испытания обстрелом и подрывом. Базой опытного бронеавтомобиля послужил известный HMMWV — «Хаммер». При создании всех конструкций его корпуса (в т.ч. балки рамы) использовались только композиционные материалы. За счёт этого компании TPI Composites удалось значительно снизить массу ACMV и, соответственно, увеличить его грузоподъёмность. В дополнение планируется на порядок продлить срок службы машины ввиду ожидаемой большей долговечности композитов по сравнению с металлом.

Значительного прогресса в области использования композитов для легкой бронетехники достигли в Великобритании. В 2007 году на 3-й международной выставке оборонных систем и оборудования в Лондоне был продемонстрирован бронеавтомобиль Cav-Cat на базе среднетоннажного грузовика Iveco, оснащённый композитной бронёй CAMAC компании NP Aerospace. Помимо штатной брони была предусмотрена дополнительная защита бортов машины за счёт установки модульных бронепанелей и противокумулятивных решёток, также состоящих из композита. Комплексный подход в защите CavCat позволил значительно снизить воздействие на экипаж и десант взрывов мин, осколков и лёгкого пехотного противотанкового оружия.

Американский опытный бронеавтомобиль ACMV с корпусом из стеклопластика

Британская бронированая машина CfvCat с дополнительными противокомулятивными экранами

Стоит отметить, что ранее компания NP Aerospace уже демонстрировала броню типа САМАС на лёгком бронеавтомобиле Landrover Snatch в составе бронекомплекта Cav100. Теперь же подобные комплекты Cav200 и Cav300 предлагаются для средних и тяжёлых колёсных машин. Изначально новый бронематериал создавался как альтернативная металлической композитная пуленепробиваемая броня с высоким классом защиты и общей прочностью конструкции при сравнительно низком весе. В его основу был положен прессованный многослойный композит, позволяющий формировать прочную поверхность и создавать корпус с минимумом стыков. По утверждению производителя, бронематериал CAMAC обеспечивает создание модульной конструкции типа «монокок» с оптимальной баллистической защитой и способностью противостоять сильным структурным нагрузкам.

Но компания NP Aerospace пошла дальше и в настоящее время предлагает оснащать лёгкие боевые машины новой динамической и баллистической композитной защитой собственного производства, расширив свой вариант комплекса защиты путём создания навесных элементов EFPA и ACBA. Первый представляет собой начинённые взрывчатым веществом пластиковые блоки, устанавливаемые поверх основной брони, а второй — литые блоки композитной брони, также дополнительно устанавливаемые на корпус.

Таким образом, легкие колёсные боевые бронированные машины с композитной бронезащитой, разрабатываемые для армии, уже не выглядели чем-то из ряда вон выходящим. Символической вехой стала победа промышленной группы Force Protection Europe Ltd в сентябре 2010 года в тендере на поставку в вооружённые силы Великобритании лёгкой бронированной патрульной машины LPPV (Light Protected Patrol Vehicle), получившей название Ocelot. Британское министерство обороны приняло решение заменить устаревшие армейские автомобили Land Rover Snatch как не оправдавшие себя в современных боевых условиях на территории Афганистана и Ирака, на перспективную машину с бронированием из неметаллических материалов. В качестве партнёров Force Protection Europe, имеющей большой опыт в производстве высокозащищенных автомобилей типа MRAP, была выбрана автостроительная компания Ricardo plc и «КинетиК», занимающаяся бронированием.

Разработка Ocelot велась с конца 2008 года. Проектировщики бронеавтомобиля решили создать принципиально новую машину на основе оригинального конструкторского решения в виде универсальной модульной платформы, в отличие от других образцов, которые базируются на серийных коммерческих шасси. Помимо V-образной формы днища корпуса, повышающей защиту от мин за счёт рассеивания энергии взрыва, была разработана специальная подвесная бронированная коробчатая рама под названием «скейтборд», внутри которой были размещены карданный вал, коробка передач и дифференциалы. Новое техническое решение позволило перераспределить вес машины таким образом, чтобы центр тяжести находился максимально близко к земле. Подвеска колёс — торсионная с большим вертикальным ходом, приводы на все четыре колеса — раздельные, узлы передней и задней осей, а также колёса — взаимозаменяемые. Навесная кабина, в которой располагается экипаж, крепится к «скейтборду» шарнирно, что позволяет откидывать кабину в сторону для доступа к трансмиссии. Внутри находятся сиденья для двух членов экипажа и четырёх человек десанта. Последние сидят лицом друг к другу, их места отгорожены перегородками-пилонами, дополнительно усиливающими конструкцию корпуса. Для доступа внутрь кабины имеются двери с левой стороны и в задней части, а также два люка в крыше. Предусмотрено дополнительное пространство для монтажа различного оборудования, в зависимости от целевого назначения машины. Для электропитания приборов установлена вспомогательная дизельная силовая установка Steyr.

Первый прототип машины Ocelot был изготовлен в 2009 году. Её масса составила 7,5 тонн, масса полезной нагрузки — 2 тонны, максимальная скорость движения по шоссе — 110 км/ч, запас хода — 600 км, радиус разворота — около 12 м. Преодолеваемые препятствия: -подъём до 45°, спуск до 40°, глубина брода до 0,8 м. Низкое расположение центра тяжести и широкая база между колёсами обеспечивает устойчивость к опрокидыванию. Проходимость повышена за счет использования увеличенных 20-дюймовых колёс. Большая часть подвесной кабины состоит из бронированных фигурных композитных бронепанелей, армированных стекловолокном. Имеются крепления для дополнительного комплекта бронезащиты. В конструкции предусмотрены обрезиненные участки для монтажа агрегатов, что позволяет снизить уровень шума, вибрации и повысить прочность изоляции по сравнению с обычным шасси. По заявлению разработчиков, базовая конструкция обеспечивает защиту экипажа от взрывов и огнестрельного оружия выше уровня стандарта STANAG IIB. Также утверждается, что полная замена двигателя и коробки передач может быть выполнена в полевых условиях в течение одного часа с помощью только штатных инструментов.

Первые поставки бронеавтомобилей Ocelot начались в конце 2011 года, а к исходу 2012 года в вооружённые силы Великобритании поступило около 200 таких машин. Компания Force Protection Europe в дополнение к базовой патрульной модели LPPV разработала также варианты с модулем вооружения WMIK (Weapon Mounted Installation Kit) с экипажем из четырёх человек и грузовой вариант с кабиной на 2 человека. В настоящее время она принимает участие в тендере министерства обороны Австралии на поставку бронированных машин.

Итак, создание новых неметаллических броневых материалов в последние годы идёт полным ходом. Возможно, не за горами то время, когда принятые на вооружение бронированные машины, не имеющие в своём корпусе ни одной металлической детали, станут обыденным делом. Особенную актуальность лёгкая, но прочная бронезащита приобретает сейчас, когда в разных уголках планеты вспыхивают вооружённые конфликты низкой интенсивности, проводятся многочисленные антитеррористические и миротворческие операции.

Алюминиевая композитная броня

Этторе ди Руссо

Профессор Ди Руссо является научным руководителем фирмы "Алюми-ниа", входящей в состав итальянской группы MCS консорциума EFIM.

Фирма "Алюминиа", входящая в состав итальянской группы MCS разработала новый тип композитной броневой плиты, пригод-ной для использования на легких боевых бронированных машинах (AFV). Она состоит из трех основных слоев различных по соста-ву и механическим свойствам алюминиевых сплавов, соединенных вместе в одну плиту посредством горячей прокатки. Эта композит-ная броня обеспечивает лучшую баллистическую защиту, чем любая стандартная монолитная броня из алюминиевых сплавов, используе-мых в настоящее время: алюминиево-магниевого (серии 5ХХХ) либо алюминиево-цинково-магниевого (серии 7ХХХ).

Эта броня обеспечивает такое сочетание твердости, ударной вязкости и прочности, которое обеспечивает высокое сопротивление баллистическому внедрению снарядов кинетического действия, а также сопротивление образованию отколов брони с тыльной поверх-ности в районе удара. Она также может свариваться при использо-вании обычных методов дуговой сварки в среде инертного газа, что делает ее пригодной для изготовления элементов боевых бронирован-ных машин.

Центральный слой этой брони изготовлен из алюминиево-цинково-магниево-медного сплава (Al-Zn-Mg-Cu), который обладает высокой механической прочностью. Передний и задний слои изготов-лены из поддающегося сварке ударновязкого Al-Zn-Mg сплава. Между двумя внутренними контактными поверхностями добавляются тонкие слои из технически чистого алюминия (99,5% Al). Они обеспечивают лучшую ацгезию и повышают баллистические свойства композитной плиты.

Такое композитное строение сделало возможным впервые исполь-зовать очень прочный Al-Zn-Mg-Cu сплав в сварной броневой конструкции. Сплавы этого типа обычно используются в конструкции самолетов.

Первым легким материалом, широко используемым в качестве броневой защиты в конструкции БТР, например, М-113, является не поддающийся термообработке Al-Mg сплав 5083. Трехкомпонентные Al-Zn-Mg сплавы 7020, 7039 и 7017 представляют второе поко-ление легких броневых материалов. Характерными примерами примене-ния этих сплавов являйте: английские машины "Скорпион", "Фокс", MCV-80 и "Феррет-80" (сплав 7017), французская АМХ-10Р (сплав 7020), американская "Брэдли" (сплавы 7039+5083) и испанская BMR -3560 (сплав 7017).


Прочность Al-Zn-Mg сплавов, полученная после термооб-работки, значительно выше прочности Al-Mg сплавов (например, сплава 5083), которые термообработке не поддаются. Кроме того, способность Al-Zn-Mg сплавов в отличие от Al-Mg сплавов к дисперсионному твердению при комнатной температуре позволяет в значительной мере восстанавливать прочность, которую они могут потерять при нагреве во время сварки.

Однако более высокая сопротивляемость Al-Zn-Mg сплавов пробиванию сопровождается их повышенной склонностью к образованию отколов брони из-за пониженной ударной вязкости.

Композитная трехслойная плита, благодаря наличию в ее составе слоев с различными механическими свойствами, является примером оптимального сочетания твердости, прочности и ударной вязкости. Она имеет коммерческое обозначение Tristrato и запатенто-вана в Европе, США, Канаде, Японии, Израиле и Южной Африке .

Рис.1.

Справа: образец броневой плиты Tristrato;

слева: поперечное сечение, показывающее твер-дость по Бринелю (НВ) каждого слоя.


Баллистические характеристики

На нескольких военных полигонах в Италии и за ее пределами были проведены испытания плит Tristrato толщиной от 20 до 50 мм обстрелом различными типами боеприпасов (различные типы 7,62-, 12,7-, и 14,5-мм бронебойных пуль и 20-мм бронебойных снарядов).

В процессе испытаний определились следующие показатели:

при различных фиксированных ударных скоростях определялись значения углов встречи, соответствующих частостям пробития 0,50 и 0,95;

при различных фиксированных углах встречи определялись ударные скорости, соответствующие частости пробития 0,5.

Для сравнения параллельно проводились испытания монолитных контрольных плит из сплавов 5083, 7020, 7039 и 7017. Результаты испытаний показали, что броневая плита Tristrato обеспечива-ет повышенное сопротивление пробитию выбранными бронебойными средствами калибром до 20 мм. Это позволяет значительно уменьшить массу на единицу защищаемой площади по сравнению с традиционными монолитными плитами при обеспечении одинаковой стойкости. Для слу-чая обстрела 7,62-мм бронебойными пулями при угле встречи 0 о обеспечивается следующее уменьшение массы, необходимой для обеспече-ния равной стойкости:

на 32% по сравнению со сплавом 5083

на 21% по сравнению со сплавом 7020

на 14% по сравнению со сплавом 7039

на 10% по сравнению со сплавом 7017

При угле встречи 0 о ударная скорость, соответствующая час-тости пробития 0,5, повышается по сравнению с монолитными плитами из сплавов 7039 и 7017 на 4...14% в зависимости от типа базисного сплава, толщины брони и типа боеприпаса Композитная плита особен-но эффективна для защиты от 20-мм снарядов FSP , при обстре-ле которыми указанная характеристика возрастает на 21%.

Повышенная стойкость плиты Tristrato объясняется соче-танием высокой сопротивляемости внедрению пули (снаряда) из-за наличия твердого центрального элемента со способностью удерживать осколки, возникающие при пробитии центрального слоя, пластичным тыльным слоем, который сам осколков не дает.

Пластичный слой с тыльной стороны Tristrato играет важ-ную роль в предотвращении отколов брони. Этот эффект усиливается возможностью отслоения пластичного тыльного слоя и его пластичес-ким деформированием на значительной площади в районе попадания.

Это важный механизм сопротивления пробитию плиты Tristrato . Процесс отслоения поглощает энергию, а пустота, образуемая между сердцевиной и тыльным элементом, может улавливать снаряд и осколки, образуемые при разрушении высокотвердого материала сердцевины. Подобным же образом, расслоение на границе раздела между передним (лицевым) элементом и центральным слоем может способствовать раз-рушении снаряда или направлять снаряд и осколки вдоль границы раздела.


Рис.2.

Слева: схема, показывающая механизм сопротивления образованию отколов брови плиты Tristrate;

справа: результаты удара тупоносым бронебойным

снарядом по толстой плите Tristrato;


Производственные свойства

Плиты Tristrato можно сварить, пользуясь теми же мето-дами, которые применяются для соединения традиционных монолитных плит из Al - Zn - Mg сплавов (методами TIG и MIG ). Структура композитной плиты требует, чтобы были все же приняты некоторые специфические меры, определяемые особенностями хими-ческого состава центрального слоя, который следует рассматривать как "нехороший для сварки" материал, в отличие от переднего и тыльного элементов. Следовательно, при разработке сварного соединения следует учитывать тот факт, что основной вклад в механи-ческую прочность соединения должен вноситься наружным и тыльным элементами плиты.

Геометрия сварных соединений должна локализовать сварочные напряжения по границе и в зоне сплавления наплавленного и основного металлов. Это является важным для разрешения проблем корро-зионного растрескивания наружного и тыльного слоев плиты, которое иногда обнаруживается в Al - Zn - Mg сплавах. Центральный элемент благодаря высокому содержанию меди обнаруживает высокое сопротивление коррозионному растрескиванию.

Rrof. ETTORE DI RUSSO

ALUMINIUM COMPOSITE ARMOUR.

INTERNATIONAL DEFENSE REVIEW, 1988, No12, p.1657-1658

Очень часто можно слышать как броню сравнивают в соответствии с толщиной стальных пластин 1000, 800мм. Или, например, что определённый снаряд может пробить какое-то «n»-количество мм брони. Факт в том, что сейчас данные расчёты не объективны. Современная броня не может быть описана как эквивалент какой-либо толщины гомогенной стали. В настоящее время существует два типа угроз: кинетическая энергия снаряда и химическая энергия. Под кинетической угрозой понимается бронебойный снаряд или, проще говоря, болванка обладающая большой кинетической энергией. В данном случае нельзя рассчитывать защитные свойства брони, исходя из толщины стальной пластины. Так, снаряды с обедненным ураном или карбидом вольфрама проходят сквозь сталь как нож в масло и толщина любой современной брони, если бы она была гомогенной сталью, не выдержала бы попадания подобных снарядов. Нет никакой брони толщиной в 300мм, которая эквивалентна 1200мм стали, и следовательно способной останавливать снаряд, который будет застревать и торчать в толще броневого листа. Успех защиты от бронебойных снарядов кроется в изменении вектора его воздействия на поверхность брони. Если повезёт, то при попадании будет лишь небольшая вмятина, а если не повезёт, то снаряд прошьёт всю броню, независимо от того толстая она или тонкая. Проще говоря, броневые листы являются относительно тонкими и твёрдыми, и повреждающий эффект во многом зависит от характера взаимодействия со снарядом. В американской армии для увеличения твёрдости брони используется обедненный уран, в других странах карбид вольфрама, который фактически является более твёрдым. Около 80% способности танковой брони останавливать снаряды-болванки приходится на первые 10-20 мм современной брони. Теперь рассмотрим химическое воздействие боеголовок. Химическая энергия представлена двумя типами: HESH (Противотанковые бронебойно-фугасные) и HEAT (Кумулятивный снаряд). HEAT - сегодня больше распространена, и не имеет никакого отношения к высоким температурам. В HEAT используется принцип фокусировки энергии взрыва в очень узкой струе. Струя образуется, когда геометрически правильный конус снаружи обкладывают взрывчаткой. При детонации 1/3 энергии взрыва используется на формирование струи. Она за счёт высокого давления (не температуры) проникает сквозь броню. Простейшей защитой от данного типа энергии служит отставленные на полметра от корпуса слой брони, при этом получается рассеивание энергии струи. Этот приём использовался в период второй мировой войны, когда русские солдаты обкладывали корпус танка сеткой-рабицей от кроватей. Сейчас подобным образом поступают израильтяне на танке Меркава, они для защиты кормы от ПТУР и гранат РПГ используют стальные шары, висящие на цепях. Для этих же целей на башне установливается большая кормовая ниша, к которой они крепятся. Другим методом защиты является использование динамической или реактивной брони. Возможно также применение комбинированной динамической и керамической брони (такая как Chobham). При соприкосновении струи расплавленного металла с реактивной бронёй происходит детонация последней, образующаяся ударная волна дефокусирует струю, устраняя её поражающий эффект. Броня Chobham работает подобным образом, но в данном случае в момент взрыва отлетают куски керамики, превращающиеся в облако плотной пыли, которая полностью нейтрализует энергию кумулятивной струи. HESH (Противотанковые бронебойно-фугасные) - боеголовка работает следующим образом: после взрыва она обтекает броню как глина и передаёт огромный импульс через металл. Далее, подобно биллиардным шарам, частицы брони сталкиваются друг с другом и, тем самым, защитные пластины разрушаются. Материал бронирования способен, разлетаясь на мелкую шрапнель, травмировать экипаж. Защита от такой брони подобна вышеописанной для HEAT. Резюмируя вышесказанное, хочется отметить, что защита от кинетического воздействия снаряда сводится к нескольким сантиметрам металлизированной брони, когда как защита от HEAT и HESH заключается в создании отставленной брони, динамической защиты, а также некоторых материалов (керамика).

В век, когда партизан, вооруженный ручным гранатометом, может уничтожить выстрелом все, начиная от основного боевого танка и до грузовика с пехотой, слова Вильяма Шекспира «И оружейники теперь в почете» как нельзя более актуальны. Технологии бронирования развиваются для защиты всех боевых единиц, от танка до пешего солдата.

К традиционным угрозам, которые всегда стимулировали разработку брони для транспортных средств, относятся высокоскоростной кинетический снаряд, выстреливаемый из пушек вражеских танков, кумулятивные боеголовки ПТУРов, безоткатные орудия и гранатометы пехоты. Впрочем, боевой опыт противоповстанческих и миротворческих операций, проводимых вооруженными силами, показал, что бронебойные пули из винтовок и пулеметов вместе с вездесущими самодельными взрывными устройствами или придорожными бомбами стали основной угрозой для легких боевых машин.

В результате, в то время, как многие из нынешних разработок в сфере бронирования нацелены на защиту танков и БТР, существует также растущий интерес к схемам бронирования для более легких машин, так же как и к улучшенным типам бронежилетов для личного состава.

Основным типом брони, которым оснащаются боевые машины, является толстолистовой металл, обычно это сталь. В основных боевых танках (ОБТ), он принимает форму катанной гомогенной брони (RHA - rolled homogeneous armour), хотя в некоторых более легких машинах, например в БТР M113, применяется алюминий.

Перфорированная стальная броня представляет собой пластины с группой отверстий, просверленных перпендикулярно лицевой поверхности и имеют диаметр менее половины диаметра предполагаемого снаряда противника. Отверстия уменьшают массу брони, при этом, что касается способности выдерживать кинетические угрозы, то снижение характеристик брони в этом случае минимально.

Улучшенная сталь

Поиски лучшего типа брони продолжаются. Улучшенные стали позволяют повысить защищенность при сохранении исходной массы или для более легких листов сохранить существующие уровни защиты.

Немецкая компания IBD Deisenroth Engineering работала совместно со своими поставщиками стали над разработкой новой высокопрочной азотистой стали. В сравнительных испытаниях с существующей сталью Armox500Z High Hard Armour, она показала, что защита от стрелковых боеприпасов калибра 7,62x54R может быть достигнута за счет применения листов, имеющих толщину около 70% от толщины, необходимой при использовании прежнего материала.

В 2009 году британская Лаборатория оборонной науки и технологии DSTL в сотрудничестве с компанией Coras анонсировала броневую сталь. названную Super Bainite. Изготавливается она с помощью процесса, известного как изотермическая закалка, она не требует дорогих присадок для предотвращения трещинообразования в процессе производства. Новый материал создается за счет нагревания стали до 1000° C, последующего охлаждения до 250°C, затем выдерживания при этой температуре 8 часов перед окончательным охлаждением до комнатной температуры.

В случаях, когда противник не имеет бронебойного вооружения, даже коммерческая стальная пластина может сослужить хорошую службу. Например, мексиканские наркобанды используют тяжело бронированные грузовики, оснащенные стальным листом для защиты от стрелкового оружия. Исходя из широкого применения в конфликтах малой интенсивности в развивающемся мире так называемой "техники", грузовиков оборудованных пулеметами или легкими пушками, было бы удивительно, если бы армии не столкнулись лицом к лицу с подобной бронированной "техникой" во время будущих беспорядков.

Композитная броня

Композитная броня, состоящая из слоев различных материалов, например металлов, пластиков, керамики или воздушной прослойки, доказала большую эффективность по сравнению со стальной броней. Керамические материалы хрупки и при использовании в чистом виде обеспечивают только ограниченную защиту, но в сочетании с другими материалами они образуют композиционную конструкцию, которая зарекомендовала себя в качестве эффективной защиты машин или отдельных солдат.

Первым композитным материалом, получившим широкое распространение, стал материал под названием «Комбинация K». Как сообщалось, он представлял собой стеклопластик между внутренним и внешним листами стали; он применялся на советских танках T-64, поступивших на вооружение в середине 60-х годов.

Броня Chobham британской разработки была установлена первоначально на британском экспериментальном танке FV 4211. Пока она засекречена, но, по неофициальным данным, она состоит из нескольких эластичных слоев и керамических плиток, заключенных в металлическую матрицу и приклеенных к опорной плите. Она была использована на танках Challenger I и II и на M1 Abrams.

Этот класс технологии может и не понадобиться, если атакующий не имеет сложного бронебойного вооружения. В 2004 году рассерженный американский гражданин оборудовал бульдозер Komatsu D355A композитной броней собственной разработки, изготовленной из бетона, заключенного между стальными листами. Броня толщиной 300 мм была непробиваемой для стрелкового оружия. Вероятно, оборудование подобным образом наркобандами и повстанцами своих машин - это всего лишь вопрос времени.

Дополнения

Вместо того чтобы оборудовать машины все более толстой и тяжелой стальной или алюминиевой броней, армии начали принимать на вооружение различные формы навесной дополнительной защиты.

Одним из хорошо известных примеров навесной пассивной брони на основе композиционных материалов является модульная рсширяемая броневая система Mexas (Modular Expandable Armour System). Разработанная немецкой IBD Deisenroth Engineering, она изготавливалась компанией Chempro. Сотни броневых комплектов были изготовлены для гусеничных и колесных бронированных боевых машин, а также колесных грузовиков. Система устанавливалась на танк Leopard 2, БТР M113 и колесные машины, например Renault 6 x 6 VAB и немецкую машину Fuchs.

Компания разработала и начала поставки своей следующей системы - продвинутой модульной броневой защиты Amap (Advanced Modular Armor Protection). Она базируется на современных стальных сплавах, алюминиево-титановых сплавах, нанометрических сталях, керамике и нанокеарамических материалах.

Ученые из вышеупомянутой лаборатории DSTL разработали дополнительную керамическую систему защиты, которая могла бы навешиваться на машины. После того как эта броня была разработана для серийного производства британской компанией NP Aerospace и получила обозначение Camac EFP, она была использована в Афганистане.

В системе применяются небольшие шестиугольные сегменты из керамики, размер, геометрия и размещение которых в массиве были исследованы лабораторией DSTL. Отдельные сегменты скрепляются литым полимером и укладываются в композиционный материал с высокими баллистическими характеристиками.

Применение навесных панелей активно-реактивной брони (динамическая защита) для защиты машин хорошо известно, но детонация таких панелей может повредить машине и представляет угрозу для пехоты, находящейся поблизости. Как говорит ее название, самоограничивающая активно-реактивная броня Slera (self-limiting explosive reactive armour) ограничивает распространение воздействия взрыва, но расплачивается за это несколько сниженными характеристиками. В ней применяются материалы, которые можно классифицировать как пассивные; они не столь эффективны по сравнению с полностью детонируемыми взрывчатыми веществами. Тем не менее, Slera может обеспечить защиту от множественных попаданий.

Невзрывная активно-реактивная броня NERA (Non-Explosive Reactive Armour) развивает эту концепцию далее и, будучи пассивной, предлагает такую же защиту, как и Slera, плюс хорошие характеристики защиты от многократного поражения против кумулятивных боеголовок. Non-Energetic Reactive Armour (неэнергетическая активно-реактивная броня) имеет дополнительно улучшенные характеристики для борьбы с кумулятивными боеголовками.

Гомогенная броня.

На заре появления сухопутной бронетехники, основным типом защиты были простые стальные листы. Их старшие товарищи, броненосцы и бронепоезда, к этому времени успели обзавестись цементированной и многослойной броней, но, в серийное танкостроение эти типы брони пришли лишь после ПМВ.

Гомогенная броня представляет собой горячекатаные листы или литые конструкции, из которых тем или иным методом собирают броневой корпус. Первым методом сборки были заклепки, как самый дешевый и быстрый на тот момент. Позже болтовые соединения существенно потеснили заклепки. К середине ВМВ основным методом соединения броневых плит стала электродуговая сварка. Первоначально сварка преимущественно была ручная газопламенная, но, развитие электротехники и освоение массового производства электродов достаточно высокого качества, привели к более широкому использованию электродуговой сварки. С начала 1930-х годов делались попытки внедрения в серийное производство автоматической электродуговой сварки. Но, достичь приемлемого качества при приемлемой стоимости удалось только в годы ВМВ в СССР, когда при производстве танков Т-34-76 и танков семейства КВ, впервые в мире стали применять автоматическую электродуговую сварку под слоем порошкового флюса.

Несмотря на изобретение электродуговой сварки еще в конце 19-го века российским инженером Н.Н. Бенардосом, вплоть до конца ВМВ в танкостроении ограниченно применялось соединение броневых плит на болты и заклепки. Это стало следствием проблем, которые возникают при сварке толстых плит из среднеуглеродистых сталей (0,25-0,45%С). Высокоуглеродистые стали в танкостроении даже сейчас практически не применяются.

Также, сложно добиться качественных сварных швов при сварке легированных и недостаточно очищенных сталей. Для измельчения структурного зерна сталей используют добавки марганца и других легирующих элементов. Они так же, повышают прокаливаемость сталей, тем самым, снижая локальные напряжения в сварном шве. Иногда может применяться закалка броневых плит, но, этот метод применяется крайне ограниченно, так как, предварительно закаленные броневые плиты при сварочном соединении создают еще большие проблемы из-за неоднородности поля внутренних напряжений. Для снятия напряжений обычно используют нормализационный отжиг или низкий отпуск. Но, для достижения существенного повышения твердости, вначале сталь должна быть закаленной на мартенсит или на троостит (то есть, высокая закалка). Высокая закалка толстостенных деталей сложной формы всегда представляет большую сложность, если это деталь величиной с корпус танка, то задача практически не решаемая.

Для повышения стойкости гомогенной брони желательно повысить твердость поверхности броневых плит, а сердцевины и строну, обращенную внутрь, оставить вязкой и сравнительно эластичной. Этот подход впервые был реализован на броненосцах конца 19-го века. В бронетехнике это решение применялось намного уже.

Проблема цементации заключается в необходимости долгой выдержки детали в порошковом карбюризаторе (смесь на основе кокса, нескольких процентов извести, и небольшой добавки поташа) при температурах 500-800*С. При этом проблематично добиться равномерной толщины карбидного слоя. К тому же, сердцевина стальной детали становится крупнозернистой, что резко снижает ее усталостную прочность и несколько снижает все прочностные параметры.

Более совершенный метод – азотирование. Азотирование проводить технически сложнее, но, после азотирования деталь подвергается нормализационному отжигу с охлаждением в масле. Это несколько компенсирует увеличение структурного зерна. Но, глубина слоя азотирования не превышает одного миллиметра при времени азотирования в десятки часов.

Прекрасный метод – цианидирование. Проводится быстрее, твердость не ниже, температура нагрева сравнительно небольшая. Но, окунать броневые плиты (и тем более, корпус танка) в расплавленную смесь цианидов, это, мягко говоря, неэкологично, да и вообще, сомнительное удовольствие.

Оптимальные свойства броневой защиты можно достичь использованием сварного корпуса из среднеуглеродистой стали, а сверху закрыть корпус сварными и/или соединенными на резьбу плитами из закаленной высокопрочной стали.

Композитная броня.

Композитные материалы это, в общем случае, материалы, сочетающие в себе два и более компонента с сильно отличающимися свойствами. К ним можно отнести армированные, многослойные, наполненные, и другие композиции (“композиция”, в данном значении, можно примерно перевести как “смесь” или “совмещение”).

К классическим примерам композитных материалов можно отнести простые железобетонные плиты, или, например, смесь кобальта и порошкового карбида вольфрама, используемую для производства твердосплавных наплавок быстрорежущего инструмента. При этом, классическое значение, и наибольшую известность термин “композитные материалы” приобрел применительно к композициям на основе полимерных матриц, усиленных тем или иным армированием (волокно, порошки, ровинги, войлоки (нетканые текстили), полые сферы, ткани, и пр.).

Применительно к броневой защите, композитная броня это броня, включающая конструктивные элементы из материалов с сильно отличающимися свойствами. Как мы уже сказали выше, внешние плиты желательно сделать максимально твердыми, а несущей основе оставить хорошую обрабатываемость, и высокую вязкость.

Следовательно, композитная броня может включать в себя различные сочетания из вязкого и упругого материал и высокотвердого материала: среднеуглеродистая сталь + керамика, алюминий + керамика, титановый сплав + закаленная инструментальная сталь, кварцевое стекло + броневая сталь, стеклопластик + керамика + сталь, сталь + СВМПЭ + корундовая керамика, и мн. др. Обычно, внешняя плита изготавливается из материала со средними прочностными свойствами, она выполняет функцию противокумулятивного экрана, а так же, обеспечивает защиту твердых хрупких элементов от попаданий осколков и пуль. Самый нижний слой выполняется несущим, оптимальный материал для него броневая сталь и/или алюминиевые сплавы. Если позволяет средства, то титановые сплавы. Для остановки наиболее эффективных противотанковых средств может дополнительно использоваться подбой из высокопрочного волокна (обычно кевлар, но, иногда используют нейлон, лавсан, капрон, СВМПЭ, и пр.). Подбой останавливает осколки, возникающие при неполном пробивании брони, обломки разрушившегося сердечника БОПС, мелкие осколки от небольшой пробоины кумулятивным снарядом. Кроме того, подбой повышает теплоизоляцию и звукоизоляцию машины. Веса подбой особо не добавляет, больше влияя на стоимость бронетехники.

В отличие от гомогенной брони, любая композитная броня работает на разрушение. Проще говоря, верхний экран легко пробивается практически любыми ПТ средствами. Твердые пластины выполняют свою функцию в процессе более или менее хрупкого разрушения, а несущая часть брони останавливает уже рассеянный удар кумулятивной струи или обломки сердечника БОПС. Подбой подстраховывает от более мощных ПТ средств, но, его возможности весьма ограничены.

При проектировании композитной брони так же учитываются три немаловажных фактора: стоимость, плотность, и обрабатываемость материал. Камнем преткновения керамики является обрабатываемость. Кварцевое стекло, так же, имеет плохую обрабатываемость, да и солидную стоимость. Стали и сплавы вольфрама отличаются высокой плотностью. Полимеры, хотя и весьма легкие, но, стоят обычно дорого, да и чувствительны к огню (как и к длительному нагреву). Алюминиевые сплавы сравнительно дороги, и имеют низкую твердость. Идеального материала, к сожалению, нет. Но, те или иные сочетания различных материалов, часто позволяют оптимально решить техническую задачу при приемлемой стоимости.