Гидрогенизация жиров уравнение. Урок по химии на тему: Сложные эфиры


Жиры – это смеси сложных эфиров, образованных трехатомным спиртом глицерином и высшими жирными кислотами. Строение жиров было выяснено в 1811 г французским химиком Шеврелем. В 1854 г Бертло доказал строение жиров, получив их нагреванием глицерина с ВЖК.

Общее название этих эфиров – глицериды. Они могут содержать как одинаковые, так и разные кислотные остатки. Чаще всего встречаются кислоты с числом атомов углерода 12 – 18.

Как правило, все сложные эфиры, входящие в состав жиров, являются полными эфирами, т.е. производными глицерина, остаток которого связан с тремя остатками ВЖК; такие полные эфиры глицерина называются триглицеридами.

Реакция получения триглицерида олеодистеарина, состоящего из остатка олеиновой кислоты и двух остатков стеариновой кислоты может быть записана следующим образом:

Глицерин – постоянная составная часть жиров, т.е. входит во все природные жиры. Кислоты же, входящие в состав жиров весьма разнообразны. Из жиров выделено около 50 различных кислот.

Получение жиров

В настоящее время практическое значение имеет лишь получение жиров из природных источников – животных и растений; синтез жиров пока экономически невыгоден.

Физические свойства жиров

Жиры бывают животного и растительного происхождения. Некоторые жиры при обычной температуре – твердые вещества (например, баранье и говяжье сало), другие – мягкие или даже жидкие. Жидкие жиры обычно называют маслами.

Жиры не имеют постоянной температуры плавления или застывания, т.к. представляют собой многокомпонентные смеси. Температура плавления жиров зависит от того, какие жирные кислоты в них входят. Жиры, в молекулах которых преобладают остатки насыщенных кислот (например, пальмитиновой и стеариновой), – твердые, в молекулах которых преобладают остатки ненасыщенных кислот (олеиновой, линолевой, линоленовой), – жидкие. Поэтому определение температуры плавления жиров дает некоторое представление о его составе. Ниже других застывает ореховое масло (– 27°С), выше - баранье сало (+55°С).

Для характеристики различных жиров помимо определения температуры плавления большое значение имеет определение иодного числа. Иодное число – это число граммов иода, присоединяющегося к 100 г жира. Иодное число служит показателем ненасыщенности жира (т.е. наличия кратных связей). Чем выше иодное число масла, тем больше способно масло к самовозгоранию. Установлено, что самовозгораться способны масла с иодным числом больше 50.

Таблица 1. Иодные числа некоторых жиров и масел

Жиры

Масла

Бараний Касторовое
Свиной Хлопковое
Олеиновая кислота Соевое
Тюлений Подсолнечное
Моржовый Льняное

Все жиры легче воды (их плотность 900 – 950 кг/м 3) и нерастворимы в ней. Жиры растворяются во многих органических растворителях (бензине, эфире, сероуглероде, четыреххлористом углероде и др.) Растворимость их в органических соединениях используют, например, при извлечении масла из семян.

Химические свойства жиров

1. Гидролиз (омыление) жиров

В результате омыления жиров щелочами образуются соли ВЖК – мыла и глицерин:

Гидрогенизация (гидрирование) жиров

Гидрогенизацией жиров называется процесс присоединения водорода к остаткам непредельных кислот, входящих в состав жиров, в результате чего эти остатки переходят в остатки предельных кислот.

Например, остатки олеиновой, линолевой и линоленовой кислот, присоединяя два, четыре или шесть атомов водорода, превращаются в остатки стеариновой кислоты.

Твердые гидрогенизованные жиры используются не только для технических целей (мыловарение), но и как пищевые жиры (маргарин).

Название “маргарин” происходит от греческого слова “маргарон”, т.е. жемчуг. Впервые метод получения маргарина путем гидрогенизации растительных жиров был предложен французский химиком Меж-Мурье. Маргарин принес ему славу – он выиграл приз, назначенный Наполеоном III за изобретение заменителя сливочного масла.

При более значительной гидрогенизации жиров жирные кислоты превращаются в высокомолекулярные спирты, применяющиеся для производства синтетических заменителей мыла.

Окисление жиров

Характерным свойством жиров, как и других органических веществ, является окисление. Эта реакция сопровождается выделением 39 кДж энергии на 1 г жира, что более чем в два раза превосходит тепловой эффект окисления углеводов или белков.

Другая особенность окисления жиров состоит в том, что в результате окисления из 1 г жира образуется до 1, 4 г воды. Это существенный вклад в поддержание общего водного баланса организма. Отдельные виды обитающих в пустынях животных (например, верблюды) такой эндогенной водой полностью удовлетворяют свои потребности во влаге.

Окислению могут подвергаться и остатки непредельных жирных кислот по месту их кратных связей. Этот процесс называется прогорганием жиров. В результате образуются кислоты с более короткими цепями типа масляной кислоты, обладающие неприятным запахом.

От количества кратных связей зависит и способность масел к высыханию. Растительные масла, содержащие в своем составе ненасыщенные связи, при окислении образуют твердую тонкую прозрачную пленку, которая носит название “линоксин”. Масло высыхает тем легче, чем больше двойных связей имеют кислотные остатки.

Чтобы ускорить процесс высыхания, высыхающие масла варят и прибавляют к ним так называемые сиккативы – катализаторы, ускоряющие высыхание. В качестве сиккативов используются соли марганца, кобальта, свинца. Высыхающее масло, подвергнутое нагреванию (варке) в присутствии сиккативов, называется олифой.

Процесс высыхания олифы очень сложен и еще полностью не изучен. Известно, что в основе высыхания лежит процесс полимеризации остатков непредельных кислот, образующих высыхающие масла, а также, возможно, их окисления. Кислород воздуха, так же как и сиккативы, является катализатором полимеризации.

Олифа применяется для приготовления масляных красок, для приготовления клеенки, линолеума и т.д.



Жидкие жиры и масла путем каталитического присоединения водорода по месту двойных связей входящих в их состав непредельных кислот могут быть превращены в твердые жиры. Это метод называют гидрогенизацией (отверждением) жиров. Впервые он был разработан в 1906г. русским ученым С.А. Фокиным, а в 1909г. им же осуществлен в промышленном масштабе.

Гидрогенизацию ведут в присутствии мелкораздробленного металлического никеля (катализатор) при 160-240 оС, пропуская в нагретое масло под давлением до 3 атм. очищенный газообразный водород. При этом непредельные триглицериды превращаются в предельные. Например:

I О 9 10 + 3 Н

СН -О-С-(СН2)7-СН=СН-(СН2)7-СН3

СН2-О-С-(СН2)7-СН=СН-(СН2)7-СН3

О триолеин (жидкий)

СН -О-С-(СН2)7-СН2-СН2-(СН2)7-СН3

СН2-О-С-(СН2)7-СН2-СН2-(СН2)7-СН3

О тристеарин (твердый)

Твердый жир, получаемый путем гидрогенизации жидких растительных масел или жиров морских животных и рыб, называется саломасом. Его широко применяют для производства искусственного твердого пищевого жира – маргарина, а также в мыловарении и др. Различные сорта маргарина получают, смешивая саломас с молоком, в некоторых случаях – с яичным желтком. Получается продукт, по внешнему виду напоминающий сливочное масло, приятный запах последнего достигается введением в маргарин специальных ароматизаторов – сложных композиций различных веществ, непременной составной частью которых является диацетил (СН3-С-С-СН3 - жидкость желтого цвета, содержится в коровьем масле.) II II

Гидрогенизация жиров имеет очень большое практическое значение. Потребность в твердых жирах в народном хозяйстве огромна. Из них получают наиболее ценные сорта мыл. Они удобнее для употребления в пищу. Кроме того, твердые жиры, поскольку они не содержат двойных связей (или содержат их значительно меньше, чем жидкие жиры), труднее окисляются и поэтому менее подвержены порче (прогорканию) при хранении. Применение гидрогенизации жидких жиров и масел дает возможность восполнить недостаток твердых жиров.

Реакции, характеризующие не насыщенность жиров

Раствор KMnO4 при встряхивании с маслами теряет фиолетовую окраску, при этом окисляются по месту двойных связей входящие в состав масел непредельные кислоты (подобно окислению этиленовых углеводородов) и восстанавливается Mn7+. Твердые жиры, содержащие мало непредельных глицеридов, обесцвечивают раствор KМnO4 в значительно меньшей мере.

Окрашенные в бурый цвет растворы иода и брома обесцвечиваются при взаимодействии с входящими в состав жиров непредельными кислотами в результате присоединения галогенов по двойным связям. Например:

СО-(СН2)7-СН=СН-(СН2)7-СН3 -СО-(СН2)7-СН-СН-(СН2)7-СН3

остаток олеиновой к-ты I I остаток 9,10-иод-

I I стеариновой к-ты

Эта реакция не только качественно, но и количественно характеризует не насыщенность (непредельность) жиров. Так, представление о содержании непредельных кислот в масле дает иодное число – количество граммов иода, которое может присоединяться (при соблюдении стандартных условий) к непредельным кислотам в 100г. жиров. Для большинства жиров и растительных масел иодное число 30-150, для сливочного масла - 30, для говяжьего сала - 32-50, для богатого непредельной олеиновой кислотой оливкового («прованского») масла 75-88. Высокие иодные числа у богатых полиненасыщенных кислотами высыхающих масел (льняное 170-180, конопляное 140-165).

Для характеристики содержания олеиновой кислоты применяют элаидиновую пробу: масло обрабатывают азотистой кислотой, при этом жидкие глицериды олеиновой кислоты (цис-изомер) превращаются в твердые глицериды элаидиновой кислоты (транс-изомер). Так, жидкое оливковое масло, богатое олеиновой кислотой (до 80 %), при действии азотистой кислоты затвердевают в плотную массу.

Все жиры являются горючими веществами. При горении их выделяется большое количество тепла: 1г жира при горении дает 9300кал.

Масла и некоторые животные жиры склонны к самовозгоранию при определенных условиях. Для оценки склонности масел к самовозгоранию необходимо знать количество ненасыщенных связей, что оценивают иодным числом. Чем больше иодное число, тем больше в масле непредельных соединений, а следовательно, оно будет более склонно к самовозгоранию. Практика показывает, что способны самовозгораться масла с иодным числом выше 50. Ниже приведены иодные числа масел и жиров. Масла: льняное (175-192); подсолнечное (122-142), конопляное (150-170), соевое (114-139), коровье (25-47), жиры: рыбий (165-185), тюлений (122-162), моржевый (168), дельфиновый (130-140).

Физические свойства и показатели пожарной опасности насыщенных карбоновых кислот

ность г/см3

Температура, оС

Температур-

ные пределы воспламенения, оС

самовоспламенения

Муравьиная (НСООН)

Уксусная (СН3СООН)

Пропионовая (СН3СН2СООН)

Масляная СН3(СН2)2СООН

Эта важная отрасль жироперерабатывающей промышленности получила в наше время широкое развитие в связи с тем, что для производства маргарина и кулинарных жиров, а также некоторых других технических продуктов требуются в основном твердые жиры. Растущая потребность в последних большей частью удовлетворяется путем применения отвержденных жидких жиров, получаемых путем гидрогенизации.

В промышленности для гидрогенизации применяют хлопковое, подсолнечное, соевое и другие растительные масла, в которых содержатся в виде глицеридов олеиновая, линолевая, линоленовая и другие ненасыщенные жирные кислоты и в небольших количествах насыщенные кислоты. Из жиров морских животных больше других гидрируют китовый жир, содержащий глицериды жирных кислот с четырьмя и пятью двойными связями. Отвержденный продукт гидрогенизации называют саломасом.

Подготовка жиров к гидрогенизации сводится к проведению рафинации для освобождения их от свободных жирных кислот и различных природных примесей, отрицательно влияющих на активность катализатора и нарушающих технологический режим гидрогенизации.

В качестве катализатора для ускорения процесса насыщения в промышленности применяют никелевые и медно-никелевые соли в виде высокодисперсных порошков, увеличивающих поверхность соприкосновения жира с водородом. Процесс насыщения жира водородом происходит при температуре 190-220 °С для получения пищевого саломаса. Сущность процесса отверждения жиров заключается в том, что глицериды ненасыщенных жирных кислот, входящие в состав жидких жиров, насыщаются водородом и переходят в твердые глицериды насыщенных кислот. Реакция протекает таким образом, что на каждую двойную связь присоединяется одна молекула водорода.

Характер реакции присоединения водорода в присутствии катализаторов обусловливает ее обратимость, т. е. наряду с процессом гидрогенизации может возникнуть обратный процесс - дегидрогенизация.

Реакция присоединения водорода протекает в гетерогенной среде, где реагирующие вещества находятся в трех агрегатных состояниях (жидкое - масло, твердое - катализатор и газообразное - водород). Насыщение идет в местах одновременного столкновения этих трех веществ. Реакция может идти в обратную сторону, если в местах контакта жира и катализатора не будет водорода. При таких условиях возникает дегидрогенизация.

Техническая гидрогенизация в своей основе является процессом селективным, так как скорость ее различна и зависит от числа двойных связей и их положения в глицеридах гидрируемоего жира. Происходит избирательное насыщение водородом радикалов наиболее ненасыщенных жирных кислот, содержащихся в данном жире. В первую очередь гидрируются более ненасыщенные жирные кислоты по сравнению с менее ненасыщенными. Так, линолевая кислота, содержащая две двойные связи, гидрируется в олеиновую кислоту быстрее, нежели олеиновая кислота в насыщенную стеариновую. У линоленовой кислоты двойная связь в положении 15-16 гидрируется быстрее, чем в положении 12-13, а двойная связь 9-10 гидрируется наиболее медленно. У жиров морских животных и рыб в первую очередь насыщаются водородом ненасыщенные кислоты с четырьмя и пятью двойными связями без заметного образования насыщенных кислот. Пальмитиновая и стеариновая кислоты начинают образовываться лишь после того, как йодное число жира достигнет 84-85. Глицериды жирных кислот с большей молекулярной массой и одинаковой степенью ненасыщенности гидрируются медленнее, чем глицериды с меньшей молекулярной массой.

При гидрировании природных жиров существует интересная закономерность в очередности насыщения кислот в разнокислотных глицеридах. Например, в хлопковом масле полное замещение до тристеарина происходит только после насыщения глицеридов, содержащих пальмитиновую кислоту. Это указывает на то, что стеариновая кислота по сравнению с пальмитиновой и другими более низкомолекулярными кислотами уменьшает скорость насыщения олеиновой кислоты. Замедленный процесс гидрогенизации рапсового масла объясняется наряду с некоторыми другими причинами тормозящим влиянием высокомолекулярной эруковой кислоты на гидрирование линолевой кислоты, содержащейся в этом масле в виде разнокислотных глицеридов.

Селективность (изберательность) гидрогенизации жиров зависит от природы жира и условий проведения процесса. Абсолютной селективности при этом практически не наблюдается. Селективность гидрогенизации жиров при повышении температуры возрастает, что отражается на увеличении скорости насыщения глицеридов линолевой кислоты и уменьшении у глицеридов олеиновой кислоты.

Повышение давления при гидрогенизации сопровождается ускорением реакции пропорционально давлению водорода. С увеличением давления селективность гидрогенизации уменьшается и насыщение глицеридов линолевой кислоты увеличивается в меньшей степени, чем глицеридов олеиновой кислоты.

Повышение активности катализатора ускоряет реакцию гидрогенизации, но снижает ее селективность. Это прежде всего влияет на уменьшение скорости насыщения глицеридов линолевой кислоты и на возрастание скорости насыщения глицеридов олеиновой кислоты.

При большой интенсивности подачи водорода на катализатор, особенно под давлением, гидрогенизация идет со значительным отклонением от абсолютной селективности.

При гидрогенизации жиров наряду с процессом насыщения двойных связей одновременно происходит образование позиционных и геометрических изомеров ненасыщенных кислот как за счет элаидирования, так и за счет миграции двойных связей.

В основном миграция проходит со смещением двойных связей на одно место и в значительно меньшей мере на два места вправо или влево от их первоначального положения. Изомеризация жирноки-слотных радикалов в процессе гидрогенизации ведет к образованию изоолеиновых, изоэлаидиновых, сопряженных и несопряженных диеновых кислот цис-, транс-, транс-цис- и транс-трансконфигураций. Количество транскислот растет с увеличением температуры гидрогенизации, а сопряженных диеновых кислот - уменьшается. Чем выше температура гидрогенизации, тем больше образуется изоолеиновых кислот. Повышение же давления приводит к снижению накопления изоолеиновых кислот из-за подвода к поверхности катализатора большего количества водорода. По этой причине такой же эффект наблюдается и при увеличении интенсивности перемешивания компонентов реакции.

При гидрогенизации кроме основных процессов отверждения жира протекают и побочные реакции, обусловливающие некоторые производственные потери. Так, при термическом распаде жира могут образовываться свободные жирные кислоты, акролеин и кетоны. Акролеин легко реагирует с водой, образуя гидракриловый альдегид. При высокой температуре гидрирования последний, взаимодействуя с водой, дает ацетальдегид, формальдегид, муравьиную кислоту и метанол. Попадание влаги делает возможным гидролитическое расщепление жира с образованием свободных жирных кислот и глицерина. Примеси водорода, поступающего на гидрогенизацию, С0 2 и СО в присутствии катализатора восстанавливаются до метана и воды.

В процессе технической гидрогенизации вследствие присоединения водорода к ненасыщенным радикалам жирных кислот происходит некоторое увеличение массы жира на 0,05-0,20%. Однако общая величина потерь масла при рафинации и гидрогенизации перекрывает прирост массы от реакции присоединения водорода. В то же время при гидрогенизации жиров имеют место следующие потери: с летучими веществами, образующимися в результате термического и гидролитического расщепления жира; с водой, уходящей из жироловушек; с салфетками фильтр-прессов; при регенерации катализатора; механические.

Жиры

Глицериды

Воски

Воски как растительные, так и животные представляют собой в основном сложные эфиры высших карбононовых кислот и высших одноатомных спиртов. Так, например, в состав пчелиного воска входит эфир пальмитиновой кислоты и мирицилового спирта С 15 Н 31 -СО-ОС 30 Н 61 (Т пл. 72 о С).

Глицеридами называются сложные эфиры карбоновых кислот и трехатомного спирта глицерина . Они входят в состав чрезвычайно важных веществ – жиров, поэтому на рассмотрении глицеридов мы остановимся несколько подробнее.

Природные жиры животного и растительного происхождения – это смеси сложных эфиров, образованных высшими карбоновыми кислотами и трехатомным спиртом глицерином, т.е. смеси глицеридов высших кислот. Значение жиров исключительно велико. Прежде всего они - важнейшая составная часть пищи человека и животных наряду с углеводами и белковыми веществами. Суточная потребность взрослого человека в жирах 80-100г.

Большое значение имеет техническая переработка жиров: из них получают такие ценные материалы, как мыло, стеарин, олифы для масляных красок и т.п.

В большинстве случаев в состав жиров входят полные эфиры глицерина, образовавшиеся в результате этерификации всех трех его гидроксильных групп и называемые триглицеридами, поэтому строение жиров может быть выражено следующей общей формулой:

A СН 2 -O-C-R

A" CH 2 -O-C-R"

В настоящее время из жиров выделено несколько десятков разнообразных предельных и непредельных кислот; почти все они содержат неразветвленные цепи углеродных атомов, число которых, как правило, четное и колеблется от 4 до 26. Однако именно высшие кислоты, преимущественно с 16 и 18 углеродными атомами – главная составная часть всех жиров. Из предельных высших жирных кислот наиболее важны пальмитиновая С 15 Н 31 СООН и стеариновая С 17 Н 35 СООН. Из непредельных высших кислот в жирах чаще всего встречается олеиновая С 17 Н 33 СООН (с одной двойной связью). Очень важны также незаменимые полиненасыщенные кислоты – линолевая С 17 Н 31 СООН (с двумя двойными связями) и линоленовая С 17 Н 29 СООН (с тремя двойными связями).

Кислоты входят в состав жиров главным образом в виде смешанных триглицеридов, т.е. таких, которые содержат остатки двух или трех разных кислот. Остатки могут занимать различные положение при углеродных атомах молекулы глицерина (последние обозначают a, b, a " , как показано выше в общей формуле триглицерида). Это существенно сказывается на свойствах смешанных триглицеридов. Простые триглицериды, содержащие три остатка какой-нибудь одной кислоты, в природных жирах встречаются сравнительно редко (когда в жире по содержанию резко преобладает какая-либо одна кислота).



Жиры практически не растворимы в воде, но хорошо растворимы в спирте, эфире и в других органических растворителях. Температуры плавления жиров зависит от того, какие кислоты участвуют в образовании входящих в их состав глицеридов. Жиры, содержащие преимущественно остатки предельных кислот, имеют наиболее высокие Т пл. и представляют собой твердые или мазеобразные вещества, жиры же, в составе которых содержатся остатки главным образом непредельных кислот – жидкости с более низкими температурами плавления. Так, трипальмитин и тристеарин – твердые вещества, а триолеин – жидкость с Т пл. –4 0 С.

По происхождению жиры подразделяют на животные и растительные.

Животные жиры добываются из жировых тканей различных животных, из молока. Они содержат в своем составе преимущественно стеариновую и пальмитиновую кислоты и сравнительно небольшое количество олеиновой кислоты. Поэтому в большинстве своем они являются твердыми или мазеобразными веществами (говяжье, баранье или свиное сало). Однако встречаются и животные жиры, содержащие значительное количество непредельных кислот и представляющие собой жидкие вещества (ворвань, тресковый жир).

Растительные жиры обычно называют маслами. Их добывают из семян и мякоти плодов различных растений. Они отличаются высоким содержанием олеиновой и других непредельных кислот и содержат лишь незначительное количество стеариновой и пальмитиновой кислот (подсолнечное, оливковое, хлопковое, льняное и др. масла). Лишь в некоторых растительных жирах преобладают предельные кислоты, и они являются твердыми веществами (кокосовое масло, масло какао и др.). Как уже было указано, наличие в растительных маслах непредельных и особенно незаменимых полиненасыщенных кислот придает им особую пищевую ценность. Некоторые растительные масла (льняное, конопляное, хлопковое), отличающиеся высоким содержанием непредельных кислот с двумя или с тремя двойными связями, а именно линолевой и линоленовой кислот, проявляют склонность на воздухе, особенно в тонких слоях, окисляться и высыхать, образуя пленки. Также масла называют высыхающими маслами. Высыхающие масла обычно используют для приготовления олиф – технических масел для разведения масленых красок. Для этого натуральные масла, богатые полиненасыщенными кислотами, варят и вводят в них в качестве добавок, ускоряющих высыхание, т.н. сиккативы (окислы свинца, соли марганца).

Жидкие жиры и масла путем каталитического присоединения водорода по месту двойных связей входящих в их состав непредельных кислот могут быть превращены в твердые жиры. Это метод называют гидрогенизацией (отверждением) жиров. Впервые он был разработан в 1906г. русским ученым С.А. Фокиным, а в 1909г. им же осуществлен в промышленном масштабе.

Гидрогенизацию ведут в присутствии мелкораздробленного металлического никеля (катализатор) при 160-240 о С, пропуская в нагретое масло под давлением до 3 атм. очищенный газообразный водород. При этом непредельные триглицериды превращаются в предельные.

Твердый жир, получаемый путем гидрогенизации жидких растительных масел или жиров морских животных и рыб, называется саломасом . Его широко применяют для производства искусственного твердого пищевого жира – маргарина, а также в мыловарении и др. Различные сорта маргарина получают, смешивая саломас с молоком, в некоторых случаях – с яичным желтком. Получается продукт, по внешнему виду напоминающий сливочное масло, приятный запах последнего достигается введением в маргарин специальных ароматизаторов – сложных композиций различных веществ, непременной составной частью которых является диацетил (СН 3 -С-С-СН 3 - жидкость желтого цвета, содержится в коровьем масле.)

Гидрогенизация жиров имеет очень большое практическое значение. Потребность в твердых жирах в народном хозяйстве огромна. Из них получают наиболее ценные сорта мыл. Они удобнее для употребления в пищу. Кроме того, твердые жиры, поскольку они не содержат двойных связей (или содержат их значительно меньше, чем жидкие жиры), труднее окисляются и поэтому менее подвержены порче (прогорканию) при хранении. Применение гидрогенизации жидких жиров и масел дает возможность восполнить недостаток твердых жиров.

Гидрогенизированные жиры – это особый тип искусственных жиров, которые создаются с помощью специальных процессов обработки пищевых продуктов. Гидрогенизация превращает полиненасыщенные жиры в другие типы жиров, так называемые транс-жиры, которые несут ответственность за многие болезни, в первую очередь, сердечно-сосудистые заболевания.

К сожалению, законодательство большинства стран допускает их использование в продуктах питания, но всё чаще и чаще вы слышим об их опасности для здоровья.

Давайте посмотрим, какие продукты содержат гидрогенизированные жиры, и, следовательно, наиболее вредны для нашего здоровья.

Что такое гидрогенизированные жиры

Гидрогенизированные жиры – это жиры, получаемые химическим путём из растительных масле с помощью процесса гидрогенизации, чтобы получить совершенно новый продукт. Гидрогенизированные жиры появились в начале XX века, когда был описан химический процесс гидрогенизации, который позволяет значительно продлить срок хранения жиров.

Причина, по которой пищевая промышленность широко использует масла и маргарины, содержащие гидрогенизированные жиры, – это возможность значительного продления сроков хранения пищевых продуктов.

Как происходит гидрирование

Гидрогенезация заключается в нагреве растительных масел при очень высоких температурах с добавлением молекул водорода и металлического катализатора (никель , медь или платина). Это приводит к разрыву двойных связей между атомами углерода и изменению структуру исходной молекулы.

Для чего нужен процесс гидрирования

Конечный продукт обладает несколькими важными свойствами:

Структурная прочность . Этот процесс позволяет превратить жидкие масла в твёрдый жир, похожий на сливочное масло.

Стабильность при высоких температурах . Это позволяет многократно использовать гидрогенизированные жиры для жарки, снижая затраты.

Увеличенный срок хранения . Это существенно снижает потери и, следовательно, обеспечивает производителей неоспоримым преимуществом.

Применение жиров в пищевой промышленности

Учитывая перечисленные выше особенности, гидрогенизированные жиры находят широкое применение в пищевой промышленности. Надо сказать, что даже многие кондитеры и производители мороженого добавляют в свою продукцию гидрогенизированные жиры, поэтому внимательно читайте этикетки продуктов.

В каких продуктах встречаются гидрогенизированные жиры

Самые распространенные продукты, которые содержат гидрогенизированные жиры:

Маргарин : продукт с кремовой текстурой и сливочным вкусом получают из растительных жиров, которое часто содержат гидрогенизированные жиры.

Мороженое : промышленное мороженое, как правило, содержит очень большое количество транс-жиров.

Промышленная выпечка : такая как печенье, крекеры, хлебные палочки, сухари, снеки, чипсы и т.д.... все они содержат гидрогенизированные жиры, так последние существенно увеличивают срок хранения продукта.

Фаст-фуд : существует риск того, что при их приготовлении используются гидрогенизированные растительные масла. Кроме того, в этих продуктах имеется большое количество глутамата, – вещество, которое усиливает вкус пищи.

Шоколад : натуральный шоколад не содержит транс-жиров и даже полезен. Но шоколадные суррогаты могут содержать гидрогенизированные растительные жиры.

Как гидрогенизированные жиры влияют на здоровье

Многочисленные исследования продемонстрировали способность гидрогенизированных жиров увеличивать риск сердечно-сосудистых заболеваний из-за увеличения уровня холестерина и канцерогенного действия.

Еще один фактор, который следует принять во внимание, – присутствие в таких продуктах никеля, что может вызвать аллергию у людей, страдающих аллергией на никель или имеющих повышенную чувствительность.

Конечно, вред прямо пропорционален количество потребляемых гидрогенизированных жиров, это значит, что если один раз в месяц поесть фаст-фуд, это не должно серьезно отразиться на состоянии здоровья, но необходимо сделать привычкой контроль качества всех продуктов.

Повышение уровня холестерина

Наибольший риск для нашего здоровья заключается в том, что гидрогенизированные жиры повышают уровень холестерина в крови . В частности, увеличивают производство холестерина ЛПНП и уменьшают уровень холестерина ЛПВП.

В дополнение к увеличению уровня холестерина в крови также повышается уровень триглицеридов , что делает организм подверженным метаболическому синдрому, состоянию, при котором отмечается высокий уровень холестерина и триглицеридов, повышение уровня глюкозы в крови и гипертония .

Канцерогенные эффекты гидрогенизированных жиров

Ещё один вредный эффект гидрогенизированных жиров проистекает из влияния на иммунную систему, которая ослабляется, а, следовательно, организм становится предрасположенным к инфекционным заболеваниям.

Изменения клеточных мембран в плане проницаемости приводит к повышению риска канцерогенеза. Исследования показали, что вредные транс-жирные кислоты изменяют геометрическую структуру клеточной мембраны, которая затем воспринимается как чужеродное тело.

Риски для печени

Потребление продуктов, содержащих гидрогенизированные жиры оказывает вредное воздействие на печень. Это увеличивает риск ожирения печени и жировой дистрофии печени. Если не лечить эту патологию, она может привести к более серьезным проблемам, таким как гепатомы или цирроза печени.

Ожирение от гидрогенизированных жиров

Как и все жиры, гидрогенизированные жиры повышают риск развития ожирения. Продукты, богатые гидрогенизированными жирами, также характеризуются большим содержанием калорий.

Одно исследование показало, что если матери, которые кормят грудью, потребляют продукты, содержащие гидрогенизированные жиры, то увеличивается риск ожирения ребёнка во взрослой жизни.

Влияние жиров на сердце

Связь между возникновением сердечно-сосудистых заболеваний и гидрогенизированными жирами определяется не только уровнем холестерина в крови, но также зависит от других факторов.

Гидрогенизированные жиры могут быть причиной воспалительного процесса в пределах артерий. В результате, артерии теряют эластичность и способность к расширению, что является важным фактором риска развития инфаркта .

Гидрогенизированные жиры в спорте

Люди, практикующие такие виды спорта, как, например, бодибилдинг, и, следовательно, придерживающиеся специальной диеты, должны полностью исключить продукты с гидрогенизированными жирами. Было показано, что продукты, содержащие гидрогенизированные жиры, ведут к потере мышечной массы, потому что они мешают синтезу белков и поглощению аминокислот.