Графит свойства и применение. Графит: плотность, свойства, особенности применения и виды


Графит, брат угля и алмаза

На картинках, иллюстрирующих нахождение углерода в минеральной природе, графит ненапрасно располагают между углем и алмазом. По свойствам графит действительно частично схож с обычным каменным углем, а частично – с благородным алмазом.

Самородный графит не всегда одинаков. Добытый из недр, он чаще всего черен, плотен, мягок и прекрасно пишет по твердой поверхности. За это греки и прозвали черный минерал «графитом»: «графо» - значит «пишу».

Народы, менее склонные к писательству, звали графит (в вольном переводе на русский) и «черным свинцом», и «углистым железом», а также «сливовиком» и даже «скальником» - поскольку графитовые обнажения чаще всего таятся в расселинах скал.

Природный графит может быть не только черным, но и серым, с явным металлическим отблеском. Графитовая масса нередко полна примесей – в том числе и золота – и промышленникам приходится использовать многоэтапные технологии очищения графита.

Между тем, каждому металлургу известно, как много графита выделяет остывающий чугун. Так не проще ли вместо добычи ископаемого графита использовать графит искусственный?

Разновидности графита

Графит имеет слоистое строение. Атомы углерода в графите объединены в пластины толщиной в одну молекулу. В идеале пластины плотно прилегают друг к другу и срастаются в шестиугольные таблитчатые кристаллы. Кристаллические разрастания графита могут принимать столбчатую, чешуйчатую или сфероподобную форму. Графитовые сферолиты порой образуют массивные грозди, округлости которых напоминают бока темных слив, покрытых глянцевым налетом.

Природный графит может быть смешан с аморфной углистой или глинистой массой, газами, битумами и соединениями чужеродных элементов, но в нем всегда наблюдается кристаллическая структура, и он достаточно легко очищается и доводится до нужных производству параметров.

Доменный графит, выделяясь в среду отдельными мельчайшими пластинками, представляет собой трудноуловимое вещество. Его улавливают и утилизуют – обычно прямо на предприятии, используя как добавку к шихте – но технология дорога и масштабы этой утилизации невелики.

Более производительным является метод изготовления графита из высокоуглеродистого сырья – летучих углеводородов, антрацита, кокса, пека. Основой метода является нагревание твердой сырьевой массы до 2800°С, а газообразной среды – до 3000°С при повышенном до 500 атм. давлении.

Технологии добычи природного и получения искусственного графита весьма затратны. Однако целесообразность подобных расходов неоспорима: свойства графита уникальны, и как материал он во многих случаях просто незаменим.

Свойства графита

Главное практическое свойство графита – устойчивость к запредельным термическим нагрузкам , инертность в диапазоне температур ниже 2500°С, высокая электропроводность, низкий коэффициент трения в парах графит-металл. Помимо того, графит легко расщепляется на чешуйки, которые, в свою очередь, без задержки прилипают к любой поверхности. Таким образом, мелкодисперсная графитная пыль становится отличным смазывающим веществом.

Температура плавления графита близка к 4000°С, что позволяет использовать материал в качестве лабораторной среды для работы с тугоплавкими металлами. Находит свое применение и высокая теплопроводность минерала.

Пластичность графита дает возможность формовать из него детали любой формы. Прессованный графит прекрасно поддается механической обработке.

Важнейшим свойством графита является его способность к перерождению в алмаз.

Алмаз из графита и графит из алмаза

Разница между графитом и алмазом состоит в плотности укладки углеродных слоев. Практически разобщенные в графите, в алмазе они соединены столь плотно, что кристаллическая решетка минерала принимает кубическую форму. То есть каждый атом углерода в алмазе находится одновременно в трех взаимно перпендикулярных слоях.

Для того чтобы углеродные слои связались воедино, не придумано ничего лучше кроме сильного сдавливания и подъема температуры. Первые синтетические алмазы были получены при разогреве графита до 1800°С под давлением в 120 тысяч атмосфер. Сегодня практикуется производство мелкой алмазной крошки при температурах порядка 1200°С и краткосрочном повышении давления до 300 тыс. атм.

Реакция обратима. Любой алмаз, разогретый до 1000°С, начинает превращаться в графит. При 2000°С процесс протекает очень быстро.

Использование графита

И природный, и синтетический графит находят применение в промышленности. В металлургии цветных и тугоплавких металлов графит незаменим как материал для обработки или изготовления литьевых форм. Способность графита растворяться в разогретых сплавах используется для придания изделиям заданных свойств.

Работоспособность подшипников скольжения обеспечивается за счет использования графита. Что важно, темп износа графитовой опоры или обоймы постоянен во всем диапазоне рабочих температур подшипников, нередко насчитывающем сотни градусов.

Графит обладает не только смазывающими, но и абразивными способностями. Тончайшие полировочные пасты содержат в себе графит. Введенный в состав фрикционных материалов, минерал повышает устойчивость изделий к нагреву.

Керамика, замешанная на графите, отличается особой огнеупорностью. Электропроводность и стойкость материала к эрозии дает возможность изготавливать из графита высоковольтные контакты, облицовку сопел и дюз.

Инертность графита делает его отличным защитным покрытием для всевозможных конструкций. Краски, созданные на основе графитовой взвеси в растворителе-пластификаторе, работают и на твердых (бетон, сталь), и на упругих (древесина, алюминий) поверхностях.

/ минерал Графит

Графит - минерал, гексагональная кристаллическая полиморфная (аллотропная) модификация чистого углерода, наиболее устойчивая в условиях земной коры. Другие модификации: алмаз, лонсдейлит, чаоит. Слои кристаллической решетки могут по-разному располагаться относительно друг друга, образуя целый ряд политипов, с симметрией от гексагональной сингонии (дигексагонально-дипирамидальный вид симметрии), до тригональной (дитригонально-скаленоэдрический в.с.). Кристаллическая решетка графита - слоистого типа. В слоях атомы С расположены в узлах гексагональных ячеек слоя. Каждый атом С окружен тремя соседними с расстоянием 1,42Α.

В кислотах графит не растворяется. Жирный на ощупь. Гибкий. Природный графит содержит 10-12 % примесей глин и окислов железа.

Формы нахождения

Хорошо образованные кристаллы редки. Кристаллы пластинчатые, чешуйчатые, кривогранные, обычно имеют пластинчатую несовершенную форму. Чаще бывает представлен листочками без кристаллографических очертаний и их агрегатами. Образует сплошные скрытокристаллические, листоватые или округлые радиально-лучистые агрегаты, реже - сферолитовые агрегаты концентрически-зонального строения. У крупнокристаллических выделений часто наблюдается треугольная штриховка на плоскостях (0001).

Происхождение

Образуется при высокой температуре в вулканических и магматических горных породах, в пегматитах и скарнах. Встречается в кварцевых жилах с вольфрамитом и др. минералами в среднетемпературных гидротермальных полиметаллических месторождениях. Широко распространён в метаморфических породах - кристаллических сланцах, гнейсах, мраморах. Крупные залежи образуются в результате пиролиза каменного угля под воздействием траппов на каменноугольные отложения (Тунгусский бассейн). Акцессорный минерал метеоритов.

рассказать об ошибке в описании

Свойства Минерала

Цвет Железно-черный, темный стально-серый
Цвет черты Черный, блестящий
Происхождение названия от греческого γράφω - пишу
Год открытия известен с древности
IMA статус действителен, описан впервые до 1959 (до IMA)
Химическая формула C
Блеск металлический
матовый
полуметаллический
Прозрачность непрозрачный
Спайность весьма совершенная по {0001}
Излом слюдоподобный
Твердость 1
1,5
2
Электрические свойства минерала Хорошо проводит электрический ток
Термические свойства Не плавится (сгорает при 3500 °С)
Strunz (8-ое издание) 1/B.02-10
Hey"s CIM Ref. 1.25
Dana (7-ое издание) 1.3.5.2
Dana (8-ое издание) 1.3.6.2
Молекулярный вес 12.01
Параметры ячейки a = 2.463Å, c = 6.714Å
Отношение a:c = 1: 2.726
Число формульных единиц (Z) 4
Объем элементарной ячейки V 35.27 ų
Двойникование по {1121}
Точечная группа 6/mmm (6/m 2/m 2/m) - Dihexagonal Dipyramidal
Пространственная группа P63mc
Плотность (расчетная) 2.26
Плотность (измеренная) 2.09 - 2.23

Графит является веществом, которое встречается в природе. Это одна из модификаций углерода, которая характеризуется определенной кристаллической решеткой. Это обуславливает свойства, которыми обладает графит. В природе углерод встречается в двух основных видах. Это графит и алмаз. Их химическая формула идентична, но физические свойства радикально отличаются.

Именно строение кристаллической решетки влияет на эти характеристики. В ней есть свободные электроны, которые определяют физические свойства вещества. Графит, плотность, виды и область применения которого интересны для множества производств, стоит рассмотреть подробнее.

Основные свойства

Графит представляет собой серое вещество с металлическим блеском. Оно обладает высокой теплопроводностью (3,55 Вт/град./см). Благодаря этому графит активно применяют в различных сферах промышленности. Этот показатель выше, чем у кирпича, что объясняется наличием подвижных электронов в кристаллической решетке. Они также содействуют хорошей электропроводимости. Во всех агрегатных состояниях это вещество характеризуется низким сопротивлением току (от 0,4 до 0,6 Ом).

Графит является инертным веществом, которое не растворяется химически активными компонентами. Это возможно только при попадании его в среду расплавленного металла с высокой точкой кипения. Графит в таких условиях расплавляется полностью, образуя карбиды.

Низкий коэффициент трения и высокая точка плавления обуславливают хорошие герметизирующие качества. (кг/м3) составляет 2,23. Но при этом материал хорошо изгибается и режется.

Структура

Рассматривая, какая плотность у графита, а также свойства и виды, необходимо уделить внимание его структуре. Это слоистое вещество. Его атомы углерода выстраиваются в кристаллическую решетку, похожую на соты. Шестиугольники в одном слое плотно прилегают друг к другу. Однако связь между каждым уровнем слаба. Именно эта особенность позволяет легко сломать графит.

Производство очищенного графита осуществляется путем термохимических и термомеханических воздействий. Для каждой отрасли производства изготавливается вещество с определенным набором качеств. Это позволяет удовлетворить потребности промышленности в графите с заданными физическими характеристиками.

Маркировка веществ, созданных искусственно, включает в себя разбивку типов материала по сфере назначения. Различают литейный, электроугольный, аккумуляторный, элементный, смазочный и карандашный графит. Существуют также специальные марки, применяемые в ядерных реакторах.

Сфера применения

При производстве задаются определенные свойства графита. Применение этого вещества полностью зависит от них. Графит используют в металлургии при изготовлении тугоплавких форм или ковшей, емкостей. При литейном процессе порошок из представленного вещества используется в виде смазки. Одной из составляющих огнеупорного кирпича является также графит. Его добавляют в смесь при изготовлении пластмассы.

Для изготовления контактов электроприборов также применяется этот материал. Этому способствуют электропроводные свойства вещества.

Графитовые карандаши известны, пожалуй, каждому человеку. Этот материал также применяется при производстве некоторых видов красок. При этом применяется именно черный (а не серый) графит. Такая краска обладает антикоррозионными качествами.

Из представленного природного минерала получают Их применяют при изготовлении сверхпрочных режущих инструментов. В машиностроении графитовый порошок выступает материалом для подшипников, а также поршневых и уплотнительных колец. В виде смазочного материала он подходит для обработки велосипедных цепей, автомобильных рессор, дверных петель.

Даже в составе многих лекарственных препаратов можно встретить графит.

Применение в пищевой промышленности

Представленное вещество также широко применяется в пищевой промышленности. Для этого при производстве оно подвергается определенной обработке. Плотность железа, этилового спирта, графита и сахара, по понятным причинам, различна. Но представленный материал может как содержать в себе, так и входить в состав некоторых веществ. Он находится в парафинах, эфирах, спирте и даже в сахаре.

В этом можно убедиться, если провести несложный опыт. Сначала нужно взять кусочек сахара. Его кладут на твердую крышку и накрывают колпачком (можно наперстком). Затем металл, которым накрыт сахар, сильно нагревают. Из-под наперстка со временем станет выделяться едкий дым. Если к нему поднести спичку, газ станет гореть.

Когда дым перестанет выделяться, можно снять наперсток. На крышке остается черная масса. Это уголь. Он представляет собой углерод, из которого и состоит графит.

Нахождение в природе

Графит, плотность которого зависит от его чистоты, находится в природе в довольно больших количествах. Ежегодно во всем мире добывается около 600 тыс. т этого вещества. Наибольшие запасы его сосредоточены в Мексике, Чехии, Китае, Украине, Бразилии, России, Канаде и Южной Корее.

С давних времен месторождения графита вызывали интерес человечества. Сегодня эти природные ресурсы разрабатывают с целью обеспечения промышленности материалами с требуемыми качествами. Графит находят в гранитах, известковых породах, слюде или гнейсах в виде волокнистых или кристаллических вкраплений. Добыча выполняется открытым и подземным способами.

Стоимость графита

Графит, плотность и чистота которого влияют на его стоимость, сегодня реализуется по достаточно приемлемым ценам. На это влияет размер его кристаллов, а также содержание углерода. Чем оно выше, тем дороже стоит графит. При достаточно большом содержании углерода повышаются Это ценно для промышленности самых разных отраслей.

Сегодня средняя стоимость графита составляет около 45 руб./кг. Если же его обрабатывали искусственно, стоимость значительно увеличивается. Также цена на природный минерал зависит от расположения месторождения.

Ознакомившись с основными свойствами и характеристиками графита, можно сделать вывод, что от его плотности зависит как стоимость, так и технические качества материала. Поэтому добытый в природе минерал подлежит последующей обработке. Это повышает его качества.

Если вас заинтересовал вопрос о том, что такое графит, вы должны знать, что он представляет собой минерал, который является представителем класса самородных элементов. Это модификация углерода. Структура является слоистой. Расположение слоев в кристаллической решетке разное, это позволяет формировать политипы.

Графит хоть и был известен с давних времен, но определенных сведений об истории его использования не удается получить из-за сходств с другими материалами по типу молибденита. Материал проводит электрический ток. При сравнении с алмазом обладает незначительной твердостью и мягкостью. После воздействия внушительных температур становится тверже, но обретает хрупкость.

Основные свойства

Что такое графит? Если вы тоже задались этим вопросом, то должны знать о некоторых физических свойствах. Например, плотность может достигать 2,23 г/см³. Что касается цвета, то он является темно-серым с металлическим блеском. Структура неплавкая, она устойчива при отсутствии воздуха к нагреванию.

На ощупь вещество скользкое и жирное. Природный графит содержит примеси глины в объеме 12% и окислы железа. В процессе трения происходит расслаивание на чешуйки, это свойство используется для производства карандашей. Что такое графит, вы не сможете узнать, если не ознакомитесь с основными характеристиками по типу теплопроводности. Она достигает 354,1 Вт/(м*К), а минимальное значение равно 100. Конкретная цифра зависит от марки, температуры, а также направления по отношению к базисным плоскостям.

Электрическая проводимость анизотропна. Коэффициент теплового расширения может составить700 К. Теплоемкость варьируется от 300 до 3000К. Графит возгорается при 3500 °C, переходя в газообразное состояние, минуя жидкую фазу. Но если одновременно с повышением температуры давление увеличивается до 1000 атмосфер, можно получить расплавленный материал.

Кристаллическая решетка

Кристаллическая решетка графита состоит из атомов углерода. Ей присуща слоистая структура, а шаг между слоями равен 0,335 нм. Атомы связаны с тремя другими атомами углерода.

Решетка может быть двух типов:

  • гексагональная;
  • ромбоэдрическая.

В каждом слое атомы углерода находятся напротив центров шестиугольников в соседних слоях. Их положение повторяется через один. Каждый расположен со сдвигом в горизонтальном направлении на 0,1418 нм

Химические и механические свойства

Задаваясь вопросом о том, что такое графит, вы должны ознакомиться с основными свойствами. Материал химически инертен, он не растворяется в веществах, кроме расплавленных металлов. Это касается тех, у которых высокое плавление. При разбавлении образуются карбиды, самыми важными из которых выступают соединения:

  • с бором;
  • кальцием;
  • железом;
  • титаном;
  • вольфрамом.

При обычных температурах соединить графит с другими веществами довольно трудно, но при воздействии внушительных температур происходит химическое соединение со многими элементами. Рассматривая свойства графита, вы выделите для себя еще и то, что материал не обладает эластичностью. Но его можно резать и изгибать. Проволока из него легко закручивается изгибается в спираль, а при вальцевании позволяет добиться 10-процентного удлинения.

При проверке проволоки на сопротивление на разрыв этот параметр составляет 2 кг/мм 2 , тогда как модуль изгиба эквивалентен 836 кг/мм 2 . Одними из важных свойств являются пластичность и жирность, которые позволили широко использовать материал в промышленности. С увеличением жирности уменьшается коэффициент трения. От этого зависит возможность использования в качестве смазочного материала. Сегодня применяется еще и способность прилипания графита к твердым поверхностям.

Оптические свойства

Среди свойств графита следует выделить еще и оптические. Коэффициент светопоглощения остается постоянным для всего спектра. На него не влияет температура лучеиспускания тела. Если рассматривать тонкие графитовые нити, то коэффициент светопоглощения будет равен 0,77. Этот параметр уменьшается до 0,55 с увеличением кристаллов графита.

Рассматривая чистый материал, вы отметите, что он обладает незначительным коэффициентом поглощения нейтронов и наивысшим коэффициентом замедления. Благодаря этому появилась возможность использования в атомных реакторах. Без графитовых электродов невозможно было бы развитие цветной и черной химической промышленности.

Областью применения графита является еще и футеровка электролизеров для получения алюминия. Материалы с высоким содержанием углерода используются для строительства электропечей и других тепловых агрегатов. Графит ложится в основу тиглей и лодочек для сверхтвердых сплавов.

Основные виды

Формула графита выглядит следующим образом: С. Его молярная масса составляет 12 г/моль. Вещество является простым. Это минерал, неметалл, он представляет собой аллотропную модификацию углерода. Среди основных видов следует выделить:

  • тигельный;
  • литейный;
  • аккумуляторный;
  • элементный;
  • для производства стержней;
  • электроугольный;
  • для изготовления смазок.

Первый используется для огнеупорных изделий, он отличается высокой теплопроводностью и устойчивостью к перепадам температур. Применение графита литейного кристаллического вида предусматривает использование материала при отливе деталей. Он имеет низкий коэффициент расширения и обладает прочностью при высоких температурах.

Аккумуляторная разновидность используется в качестве добавки, а также при производстве электродов. Среди основных характеристик - повышенные химические и технические свойства. При производстве стержней используется тонкодисперсный графит, который не содержит примесей железа. Для изготовления гальванических элементов применяется элементная разновидность, которая отличается высокой электро- и теплопроводностью. Серый графит применяется еще и для изготовления электропроводящей резины.

Искусственный графит

Формула графита вам известна, однако это не все, что следует знать, если вы занимаетесь изучением этого вещества. Например, сегодня производится искусственный графит, который может быть мелкозернистым, конструкционным, литейным или антифрикционным. Область использования достаточно широка.

Материал применяется при изготовлении электрических установок и машин, огнеупорных материалов, на производстве и в области горнодобывающей промышленности. Из искусственного графита изготавливаются краски, а также аккумуляторные батареи и покрытия. Незаменимо вещество в узконаправленных областях по типу ядерной промышленности.

В заключение

В последнее время интерес к описываемому минералу возрос. На основе его волокон изготавливаются материалы по типу углепластика, углеродных волокнистых сорбентов, композиционных материалов на основе углеродного волокна, а также углеродных волокнистых материалов. Особое внимание уделяется углепластику, который применяется в химической промышленности, а также машиностроении.

[содержание]

Такой распространенный химический элемент, как углерод, встречается в природе в виде двух полиморфных разновидностей. Эти разновидности – графит и алмаз. Хотя формулы графита и алмаза идентичны, и они являются природными проявлениями одного и того же химического элемента, они довольно резко отличаются по своим физическим свойствам и структуре.

Графит — камень, который используют в промышленности

Такие различия обусловлены особенностями строения кристаллической решетки графита. Наличие свободных электронов, которые имеет кристаллическая решетка графита, обуславливает его физические свойства.

Свойства графита

Природный графит представляет собой серое вещество, имеющее слабый металлический блеск. Он имеет высокую степень теплопроводности, которая составляет около 3,55 Вт/град/см. Этот показатель в несколько раз выше, нежели у простого глиняного кирпича. Такая высокая теплопроводность объясняется присутствием в его кристаллической решетке подвижных электронов.

Подвижные электроны обуславливают не только высокую теплопроводность элемента, но и такое физическое свойство, как высокая электропроводимость. Удельное сопротивление материала электрическому току составляет от 0,4 до 0,6 Ом. Такой низкий предел электрической сопротивляемости характерен для всех видов и агрегатных состояний, которые он имеет.

Если рассматривать его химические свойства, то он является инертным и неспособен растворяться в химически активных растворах. Его полное растворение может происходить только в металлах, имеющих высокую точку плавления. При этом процессе образуются карбиды. Такие химические соединения имеют очень разнообразные химические и физические свойства, которые используются для производства современных твердосплавных материалов.

Карбиды являются основой для производства всех твердых сплавов, которые известны на сегодняшний день. Наиболее часто используются соединения углерода с вольфрамом и титаном. Их применение дает возможность для производства режущего инструмента, который обладает такими эксплуатационными характеристиками, как термическая устойчивость и износостойкость.

Низкий коэффициент трения и устойчивость к действию высоких температур делает его незаменимым материалом для производства изделий, основной функциональной задачей которых является обеспечение герметичности различных соединений. Подобные изделия из графита позволяют изготавливать качественные уплотнительные материалы без применения смол и различных неорганических наполнителей.

Для этих целей промышленностью выпускается терморасширенный графит. Для его производства используется природный чешуйчатый графит, который обрабатывается неорганическими кислотами. В результате обработки природного чешуйчатого варианта материала получается эластичный и химически инертный образец, используемый для производства набивок и смазок, используемых для герметизации соединений.

Учитывая то, что аллотропная форма углерода характеризуется определенной кристаллической решеткой, он имеет следующие структурные формы:

  • Явнокристаллические
  • Скрытокристаллические
  • Высокодисперсные материалы, называемые углями

Существует классификация, которая разделяет природные графиты по структуре и размерам кристаллов:

  • Плотнокристаллические графиты
  • Чешуйчатые графиты

Искусственный и природный варианты

Скопления этого минерала, которые имеют промышленное значение, находятся в Китае, Корее, Индии и Бразилии. Эти страны являются основными поставщиками природного графита на мировой рынок. Залежи графита разрабатываются на Украине, в России, Чехии. В связи с большой потребностью в данном минерале его природные месторождения неспособны удовлетворить возрастающую популярность.

Преимуществом графита, который получают искусственным путем, является его химическая чистота. Содержание углерода в нем составляет 99%. Наибольшая плотность графита наблюдается в рекристаллизованных вариантах. Этот вариант производится путем термомеханических и термохимических обработок. Благодаря таким способам обработки значительно повышаются показатели плотности. Этот показатель крайне важен для теплопроводности материалов.

Из искусственных вариантов этого материала нужно выделить силицированный графит. Этот современный материал получают путем пропитывания пористого графита кремнием. Процесс пропитки производится под действием высокой температуры и давления. В результате такой обработки получается материал, обладающий высокой степенью износостойкости.

Основным достоинством этого материала является низкий коэффициент трения. Этот искусственный вариант используется для производства деталей, работающих при воздействии больших температур, когда не требуется высокая механическая прочность и твердость.

Еще одной разновидностью данного минерала является изостатический графит, получаемый в результате прессования при больших температурах. Основное применение этой разновидности лежит в изготовлении литейных форм. Ее также применяют для производства приборов для нагревания.

Сопротивление при механической резке у этого материала в несколько раз ниже, чем у стали и чугуна. Поэтому изготовление деталей из изостатического графита обходится намного дешевле, чем изготовление аналогичных деталей из других материалов. При этом эксплуатационные характеристики изостатического графита в несколько раз превышают аналоги, которые изготовлены из альтернативных материалов.

Каждая отрасль современной промышленности, которая потребляет этот минерал в качестве исходного сырья для производства определенных изделий, выдвигает свои требования к качеству графита. Поэтому современная промышленность производит достаточно большую номенклатуру сырья на его основе в зависимости от потребностей заказчиков.

Основные сферы применения

Высокая стойкость к температуре, которую имеет природный углерод, обуславливает его основную сферу применения. Это изделия, которые работают в условиях высокой температуры окружающей среды. Например, из них делаются формы, в которых производится закалка различных инструментов.

Природный минерал и препараты, его содержащие, являются основой для таких изделий, как формы для литья, огнеупорные лакокрасочные материалы, смазки для подшипников качения и пр.

При изготовлении электродов с положительным зарядом он способствует улучшению электропроводности. Химическая инертность минерала делает его идеальным сырьем для материалов, которые работают в агрессивных средах.

Материалы, изготовленные на его основе, способны без изменения эксплуатационных характеристик работать в тех сферах, где не могут работать другие конструкционные материалы.

Основные марки

Существует следующая классификация марок этого материала:

  • Тигельный
  • Литейный
  • Элементный
  • Карандашный
  • Электроугольный
  • Аккумуляторный

Каждая из этих марок отличается процентным содержанием чистого углерода. Современная промышленность выпускает на основе графита такой инновационный материал, как стеклоуглерод. Этот материал обладает практически нулевой пористостью. Этот показатель крайне важен для эксплуатационных характеристик.

Основная сфера применения лежит в изготовлении химически стойкой посуды. Он способен выдерживать температуры до 3000 градусов. Причем такую температуру он способен выдерживать как в условиях вакуума, так и в условиях агрессивной окружающей среды.

В последнее десятилетие интерес к этому минералу значительно возрос. На основе волокон углерода производятся следующие виды современных материалов:

  • Углеродные волокнистые материалы
  • Углеродные волокнистые сорбенты
  • Углепластики
  • Композиционные материалы на основе углеродного волокна

Особое внимание уделяется использованию углепластиков, которые находят все более широкое применение в машиностроении, химической промышленности и во многих других сферах. Их применяют в качестве альтернативы металлическим изделиям. По прочности они не уступают изделиям из металла, а вот по таким параметрам, как коррозионная стойкость и стойкость к высоким температурам, значительно их превосходят.